
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 6038
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

www.manaraa.com

Marie-Pierre Gleizes
Jorge J. Gomez-Sanz (Eds.)

Agent-Oriented
Software
Engineering X

10th International Workshop, AOSE 2009
Budapest, Hungary, May 11-12, 2009
Revised Selected Papers

13

www.manaraa.com

Volume Editors

Marie-Pierre Gleizes
Paul Sabatier University, IRIT, Institute de Recherche
en Informatique de Toulouse
118, Route de Narbonne, 31062, Toulouse, Cedex 9, France
E-mail: marie-pierre.gleizes@irit.fr

Jorge J. Gomez-Sanz
Universidad Complutense de Madrid, Facultad de Informatica
Avda. Complutense s/n, 28040 Madrid, Spain
E-mail: jjgomez@fdi.ucm.es

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19207-4 e-ISBN 978-3-642-19208-1
DOI 10.1007/978-3-642-19208-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011920739

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, C.2.4, D.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.manaraa.com

Preface

Even though a multi-agent system (MAS) developer can count on development
environments, frameworks, languages, and methodologies, it is unrealistic to
think everything is done. Elementary activities in software engineering, such
as testing the developed MAS and ensuring an MAS specification meets the ini-
tial requirements, have been barely studied in the agent community, compared
with other aspects of development, such as design or implementation. Such gaps
need to be identified and filled in properly.

Answers will come via a transfer of knowledge from different areas, not only
from software engineering. Mathematics, psychology, sociology, artificial intelli-
gence, to mention a few, can supply the theories and results that characterize
an MAS as something different from other pieces of software. Such a mixture
of disciplines necessarily needs a glue that puts them together into a body of
knowledge, and this glue is agent-oriented software engineering.

As suggested by its name, Agent-Oriented Software Engineering Workshop is
a forum for works with a strong engineering component. With this bias, the scope
of the workshop is still sufficiently general to host different kinds of contributions,
from which we would like to highlight on two: MAS specification languages and
development processes.

The AOSE community has invested effort in producing MAS specification
languages. A MAS specification, written with one of these languages, uses agent
related concepts to describe a problem and its solution. The elements of these
specification languages are inspired in agent research, being BDI works the most
frequently cited.

While agent specification languages embody the research concepts, the de-
velopment processes capture the development experience. They identify which
are the necessary steps to produce an MAS. This implies generating a MAS
specification and indicating how, from this specification, a software product, the
actual MAS, can be obtained. A development process suggests ways to organize
the development. It contains activities (each one with their inputs, outputs, and
software support tools), descriptions of products to obtain, and development
roles.

In a sense, both specification languages and development processes have
served to move on from laboratory-scale developments to a scope of applica-
bility closer to the standard practices of software engineering. Now, it is possible
to address every research result and put it in the context of a development by
means of these two elements.

Continuing with this endeavor, the 9th International Workshop on Agent-
Oriented Software Engineering (AOSE 2009) took place in Budapest in May 2009
as part of the 8th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2009). It received 30 submitted papers, which

www.manaraa.com

VI Preface

reflects the continuing interest in the area. All papers were reviewed by at least
three reviewers from an international Program Committee of 43 members and
6 auxiliary reviewers, and, as a result, 11 papers were selected to appear in this
proceedings volume.

As a novel contribution, this volume includes five additional surveys address-
ing key areas in development: agent-oriented modelling languages, implementa-
tion of MAS, testing of MAS, software processes, and formal methods for the
development of MAS. They permit analysis of the current state in the generation
of specifications of MAS, the way these specifications can be implemented, how
they can be validated, and what steps are necessary to do so.

In structuring this volume, we have organized the papers into four sections.
The first deals with multi-agent organizations, which provides a valuable ab-
straction for agents whose integration in a development method is not trivial.
The second section addresses concrete development techniques that enable the
transition from specification to code or that validate a concrete implementation.
The third section moves one step higher, going beyond the concrete technique
and proposing a development method for designing concrete types of systems.
The last section introduces the surveys elaborated for this volume. They can be
used as an introduction to relevant areas of agent-oriented Software Engineering
and as an indicator of the work remaining to be done.

1 Organizations

The first section begins with a paper by Oyenan et al. where a conceptual frame-
work for designing reusable multi-agent organizations is proposed. The frame-
work combines component-oriented and service-oriented principles. Components
are autonomous multi-agent organizations that provide or use services as defined
by generic interfaces. The composition of these services is possible, leading to
reusable components that can be composed to build larger organizations.

The second paper, written by Aldewereld et al., focuses on the structural
adaptation to context changes using the OperA organizational model. The pa-
per contributes with a formal representation of organizations and a formal in-
terpretation of the adaptation process. The chosen formalism is an extension of
computational tree logic (CTL), called LAO.

The section concludes with a paper by Argente et al. The work proposes a
guideline focused on service-oriented open MAS for desiging virtual organiza-
tions. The guideline suggests activities along the analysis and design stages of a
development based on the organization theory and the service-oriented develop-
ment approach.

2 Development Techniques

The section starts with a paper by Garcia-Magariño et al. This work introduces a
technique for producing model transformations automatically using examples of
the expected output of the transformation for some example input models. The

www.manaraa.com

Preface VII

technique is known as model transformation based on examples (MBTE). Its use
in the context of an MAS development is illustrated using INGENIAS as a devel-
opment methodology. As a result, different relevant applications are identified,
such as producing preliminary definitions of an agent skill or interactions.

The section continues with a paper on automated testing by Zhang et al.
The paper describes an approach to unit testing of plan-based systems, with
a focus on automated generation and execution of test cases. The contribution
provides an automated process for test case generation and requirements for
an environment where the unit tests can be executed. The paper includes a
discussion of the implemented system and some results from its use.

The last paper is a contribution from Sudeikat and Renz. The work intro-
duces a systemic modelling level which can complement established modelling
approaches. Its purpose is to anticipate the collective system behavior from a
collection of designs of autonomous actors. As an application of the approach,
the authors introduce the Marsworld case study, where a set of mining activities
in a distant planet are addressed.

3 Development Method Proposals

The first work in this section presents Koko-ASM, by Sollenberger and Singh,
which is a guideline for building affective applications developed by Sollenberger
et al. Koko-ASM identifies what pieces of information are necessary for the
instantiation of the Koko architecture, a middle-ware that reduces the burden
of incorporating affect into applications. The approach is validated with the
development of an application for promoting positive physical behavior in young
adults.

Following, Hahn et al. present a mechanism for the generation of agent in-
teraction protocols. The mechanisms are based on a domain-specific modelling
language for MAS called DSML4MAS. With DSML4MAS, protocols are spec-
ified, and then transformed into executable code. As an example, the authors
explain how a contract-net protocol is translated into programming instructions
for the Jack agent platform.

The next work is a paper by Nunes et al. focused on multi-agent system
product lines. It proposes a domain engineering process for development of this
kind of system. Original contributions of this process are the possibility of docu-
menting agent variabilities and tracing agent features. The process is represented
using the OMG’s software process engineering model and illustrated with the
development of a Web application.

The last paper in this section by Bogdanovych et al. is about virtual heritage
application construction. It proposes a development process based on the concept
of virtual worlds in the Second Life platform and Virtual Institutions technology.
As an application example, the paper introduces the City of Uruk project, which
intends to recreate the ambience of the city Uruk, situated in Iraq, from the
period around 3000 B.C., in the Virtual World of Second Life.

www.manaraa.com

VIII Preface

4 State-of-the-Art Survey

The first survey concerns modelling approaches, by Argente et al. The adoption
of meta-models by the different agent-oriented methodologies has led to a variety
of modelling languages, not always supported by meta-modelling languages. This
survey studies these languages addressing issues such as the maturity of the
modelling language or its expressive capability.

If modelling is important for specifying the system, the next activity one
thinks of is implementing the specification. That is the focus of the second sur-
vey, written by Nunes et al. This survey encompasses different implementation
approaches, from transformation of specifications to manually coding the spec-
ification with conventional methods. The interest of this part is to guide new-
comers to the different ways a specification can be realized using agent-oriented
approaches.

Lately, there is growing concern on the importance of testing activities in
agent-oriented development. Nguyen et. al study this less regarded aspect of
development, indicating emergent approaches for testing agent systems and what
support a developer can find.

All activities in development necessarily have to be considered within a de-
velopment process. Method engineering, the topic of the survey by Cossentino
et al., has studied these activities and how they can be interleaved to produce a
new development process. This survey will be useful for those wanting to know
what elements an agent-oriented methodology should regard and how a new
methodology can be built using fragments from existing methodologies.

To conclude, the last survey, from El Fallah-Seghrouchni et al., aims to
capture the current state of formal method approaches in agent-oriented soft-
ware engineering research. Some formal methods propose their own develop-
ment approaches, but others could be reused or integrated within other non-
formal approaches. El Fallah-Seghrouchni et al. review briefly a selection of these
methods, trying to illustrate how they can help in development and what tool
support exists.

September 2010 Marie-Pierre Gleizes
Jorge J. Gomez-Sanz

www.manaraa.com

Organization

Workshop Chairs

Marie-Pierre Gleizes (Co-chair)
Université Paul Sabatier
IRIT, Institut de Recherche en Informatique de Toulouse
118, Route de Narbonne, 31062 Toulouse Cédex, France
Email: Marie-Pierre.Gleizes@irit.fr

Jorge J. Gomez-Sanz (Co-chair)
Facultad de Informática
Universidad Complutense de Madrid
Avda. Complutense, 28040 Madrid, Spain
Email: jjgomez@fdi.ucm.es

Steering Committee

Paolo Ciancarini University of Bologna
Michael Wooldridge University of Liverpool
Joerg Mueller Siemens
Gerhard Weiss Software Competence Center Hagenberg GmbH

Program Committee

Federico Bergenti (Italy)
Carole Bernon (France)
Olivier Boissier (France)
Juan Antonio Bot́ıa (Spain)
Massimo Cossentino (Italy)
Keith Decker (USA)
Scott DeLoach (USA)
Virginia Dignum (The Netherlands)
Cu Duy Nguyen (Italy)
Klaus Fischer (Germany)
Ruben Fuentes (Spain)
Paolo Giorgini (Italy)
Adriana Giret (Spain)
Laszlo Gulyas (Hungary)
Christian Hahn (Germany)
Brian Henderson-Sellers (Australia)
Vincent Hilaire (France)

Tom Holvoet (Belgium)
Vicent Julian Inglada (Spain)
Joao Leite (Portugal)
Juergen Lind (Germany)
Viviana Mascardi (Italy)
Frédéric Migeon (France)
Simon Miles (UK)
Ambra Molesini (Italy)
Haris Mouratidis (UK)
Andrea Omicini (Italy)
H. Van Dyke Parunak (USA)
Juan Pavón (Spain)
Michal Pechoucek (Czech Republic)
Carlos Jose Pereira de Lucena (Brazil)
Anna Perini (Italy)
Gauthier Picard (France)
Alessandro Ricci (Italy)

www.manaraa.com

X Organization

Fariba Sadri (UK)
Valeria Seidita (Italy)
Onn Shehory (Israel)
Arnon Sturm (Israel)
Viviane Torres da Silva (Brazil)

Laszlo Varga (Hungary)
Danny Weyns (Belgium)
Michael Winikoff (New Zealand)
Eric Yu (Canada)

Auxiliary Reviewers

Estefania Argente
Jiri Hodik
Mirko Morandini

Christophe Sibertin-Blanc
Martin Slota
Jiri Vokrinek

www.manaraa.com

Table of Contents

I Organizations

Exploiting Reusable Organizations to Reduce Complexity in Multiagent
System Design . 3

Walamitien H. Oyenan, Scott A. DeLoach, and Gurdip Singh

A Formal Specification for Organizational Adaptation 18
Huib Aldewereld, Frank Dignum, Virginia Dignum, and
Loris Penserini

GORMAS: An Organizational-Oriented Methodological Guideline for
Open MAS . 32

Estefańıa Argente, Vicent Botti, and Vicente Julian

II Development Techniques

Model Transformations for Improving Multi-agent System Development
in INGENIAS . 51

Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and
Rubén Fuentes-Fernández

Automated Testing for Intelligent Agent Systems . 66
Zhiyong Zhang, John Thangarajah, and Lin Padgham

Qualitative Modeling of MAS Dynamics: Using Systemic Modeling
to Examine the Intended and Unintended Consequences of Agent
Coaction . 80

Jan Sudeikat and Wolfgang Renz

III Development Method Proposals

Methodology for Engineering Affective Social Applications 97
Derek J. Sollenberger and Munindar P. Singh

Automatic Generation of Executable Behavior: A Protocol-Driven
Approach . 110

Christian Hahn, Ingo Zinnikus, Stefan Warwas, and Klaus Fischer

www.manaraa.com

XII Table of Contents

On the Development of Multi-agent Systems Product Lines: A Domain
Engineering Process . 125

Ingrid Nunes, Carlos J.P. de Lucena, Uirá Kulesza, and
Camila Nunes

Developing Virtual Heritage Applications as Normative Multiagent
Systems . 140

Anton Bogdanovych, Juan Antonio Rodŕıguez, Simeon Simoff,
A. Cohen, and Carles Sierra

IV State-of-the-Art Survey

Modelling with Agents . 157
Estefańıa Argente, Ghassan Beydoun, Rubén Fuentes-Fernández,
Brian Henderson-Sellers, and Graham Low

A Survey on the Implementation of Agent Oriented Specifications 169
Ingrid Nunes, Elder Cirilo, Carlos J.P. de Lucena, Jan Sudeikat,
Christian Hahn, and Jorge J. Gomez-Sanz

Testing in Multi-Agent Systems . 180
Cu D. Nguyen, Anna Perini, Carole Bernon, Juan Pavón, and
John Thangarajah

Processes Engineering and AOSE . 191
Massimo Cossentino, Marie-Pierre Gleizes, Ambra Molesini, and
Andrea Omicini

Formal Methods in Agent-Oriented Software Engineering 213
Amal El Fallah-Seghrouchni, Jorge J. Gomez-Sanz, and
Munindar P. Singh

Author Index . 229

www.manaraa.com

Part I

Organizations

www.manaraa.com

Exploiting Reusable Organizations to Reduce
Complexity in Multiagent System Design�

Walamitien H. Oyenan, Scott A. DeLoach, and Gurdip Singh

Multiagent and Cooperative Robotics Laboratory,
Kansas State University 234 Nichols Halls, Manhattan Kansas, USA

{oyenan,sdeloach,gurdip}@k-state.edu

Abstract. Organization-based Multiagent Systems are a promising way
to develop complex multiagent systems. However, it is still difficult to
create large multiagent organizations from scratch. Multiagent organiza-
tions created using current AOSE methodologies tend to produce ad-hoc
designs that work well for small applications but are not easily reused.
In this paper, we provide a conceptual framework for designing reusable
multiagent organizations. It allows us to simplify multiagent organization
designs and facilitate their reuse. We formalize the concepts required to
design reusable organization-based multiagent services and show how we
can compose those services to create larger, more complex multiagent
systems. We demonstrate the validity of our approach by designing an
application from the cooperative robotics field.

Keywords: Multiagent Organizations, Design Methodologies, Cooper-
ative Robotics.

1 Introduction

Multiagent Systems (MAS) have been seen as a new paradigm to cope with the
increasing need for dynamic applications that adapt to unpredictable situations.
Large MAS are often composed of several autonomous agents engaging in
complex interactions with each other and their environment. Consequently,
providing a correct and effective design for such systems is a difficult task. To
reduce this complexity, Organization-based Multiagent Systems (OMAS) have
been introduced and they are viewed as an effective paradigm for addressing the
design challenges of large and complex MAS [9, 25]. In OMAS, the organizational
perspective is the main abstraction, which provides a clear separation between
agents and system, allowing a reduction in the complexity of the system. To
support the design of OMAS, several methodologies have been proposed [8].

Nonetheless, one of the major problems with the wide-scale adoption of OMAS
for the development of large-scale applications is that, so far, the methodologies
proposed work well for small systems, but are not well suited for developing

� This work was supported by grants from the US National Science Foundation
(0347545) and the US Air Force Office of Scientific Research (FA9550-06-1-0058).

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 3–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

4 W.H. Oyenan, S.A. DeLoach, and G. Singh

large and complex applications. Designers generally handle complexity based on
intuition and experience, leading to ad-hoc designs that are difficult to maintain.

Therefore, we propose employing reusable multiagent organizations designed
using both component-oriented and service-oriented principles. These two
well-established software engineering approaches allow us to decompose large
multiagent organizations into smaller organizations that can be developed
separately and composed later, thus allowing designers to design large and
complex OMAS more easily. Herein we assume that organizations are populated
by cooperative agents that always attempt to achieve their assigned goals.

In our approach, services are the key concept allowing us to compose
OMAS components into larger, more complex systems. OMAS components are
autonomous multiagent organizations that provide or use services as defined by
generic interfaces called connection points. OMAS components are composed
such that required services match provided services. The composition process
ensures the consistency of all the bindings and results into a valid composite
organization.

Our contribution is two-fold. First, we rigorously specify the key concepts
used in our framework and describe the mechanisms that allow the design of
reusable OMAS components. Second, we formally define the composition process
through which reusable OMAS components can be composed to build larger
organizations.

We present related work in Section 2 followed by an overview of our
organizational model in Section 3. Section 4 defines the key concepts of
composable organizations while Section 5 describes our composition process.
Finally, we illustrate our approach with an example followed by conclusions and
future work.

2 Related Work

Several frameworks for multiagent systems have been proposed to deal with
the complexity of large software systems [9, 10, 18, 25], while decomposition
has long been suggested as a mechanism to deal with complex systems [14].
While current agent-oriented methodologies suggest decomposing organizations,
they fail to provide guidance or a rigorous composition process. For instance,
Ferber et al. propose partitioning a multiagent system into groups [9] that
interact via a gatekeeper agent participating in multiple groups. Unfortunately,
they provide no prescription for actually aggregating those groups into a
coherent system. Cossentino et al. also propose developing OMAS with a
hierarchical structure based on holons [3]. While they divide the system into
loosely coupled sub-organizations (holons), there is no guidance on how to
recombine them. In general, in order to recombine the organizations, the designer
must understand the internal behavior of each sub-organization. Our approach
proposes the rigorous specification of interfaces required for composition, thus
supporting reusability and maintainability of complex OMAS. Organizations can
be developed by different designers and combined later.

www.manaraa.com

Exploiting Reusable Organizations to Reduce Complexity in MAS Design 5

Others have proposed compositional approaches for building MAS. DESIRE
[1] supports the compositional design of MAS in which components represent
agents that can be composed of subcomponents. However, like other
component-based frameworks, DESIRE is agent-centric and does not support
OMAS.

Few agent-oriented approaches explicitly use service-oriented principles.
Most of the unifying work between services and agents concern agent-based
service-oriented systems, where agents simply wrap services [12, 13]. However,
Cao et. al. propose a methodology called Organization and Service Oriented
Analysis and Design (OSOAD) [2], which combines organizational modeling,
agent-based design and service-oriented computing to build complex OMAS.
Their approach is similar to ours in the sense that complex OMAS are built using
service concepts. However, OSOAD services are offered only at the agent level.
Our approach permits entire organizations to act as service providers (while still
allowing agent-level services), thus allowing us to develop cooperative services
that cannot be provided by individual agents. In addition, we specify standard
interfaces that allow OMAS components to be composed without requiring
internal design knowledge.

3 Organizational Model

Our work is based on the Organization Model for Computational Adaptive
Systems (OMACS) [7]. OMACS is a formal framework for describing OMAS
and is supported by the O-MaSE process framework [10]. OMACS defines
an organization as a set of goals (G) that the organization is attempting to
accomplish, a set of roles (R) that must be played to achieve those goals, a set
of capabilities (C) required to play those roles and a set of agents (A) who are
assigned to roles in order to achieve organizational goals. While an agent may
play an assigned role in any way it wishes, OMACS does assume the agent will
adhere to some minimal expected behavior (e.g. working toward its assigned
goal). (There are more entities defined in OMACS that are not relevant for this
paper and the reader is referred to [7] for the complete model). In this paper, we
use a generalization of the OMACS model and only consider the goals, roles and
the relationship that exists between them. Those entities represent the persistent
part of the organization, the organization structure [9], which can be populated
later with heterogonous agents to produce a concrete organization. There are
many other organizational models for OMAS [8] and the approach proposed in
this paper could well be adapted to any of them.

In a typical multiagent organization, organizational goals and roles are
organized in a goal tree [11, 22, 24] and a role model [15, 24, 25] respectively.
We choose to organize our goals using a Goal Model for Dynamic Systems
(GMoDS) [6]. In a GMoDS goal model, goals are organized in a goal tree such
that each goal is decomposed into a set of subgoals using an OR-decomposition
or an AND-decomposition. In addition, the GMoDS goal model contains two
time-based relationships between goals: the precedes and triggers functions.

www.manaraa.com

6 W.H. Oyenan, S.A. DeLoach, and G. Singh

We say goal g1 precedes goal g2 if g1 must be satisfied before g2 can be
pursued by the organization. Moreover, during the pursuit of specific goals,
events may occur that cause the instantiation of new goals. Instantiated goals
may be parameterized to capture a context sensitive meaning. If an event
e can occur during the pursuit of goal g1 that instantiates goal g2, we say
g1 triggers g2 based on e. GMoDS defines a goal model GM as a tuple
〈G, Ev, parent, precedes, triggers, root〉 where:

• G: set of organizational goals (where the set GL represent the leaf goals).
• Ev: set of events.
• parent: G → G ; defines the parent goal of a given goal.
• precedes: G → 2G ; indicates all the goals preceded by a given goal.
• triggers: Ev → 2G×G; 〈g1, g2〉 ∈ triggers(e) iff g1 triggers g2 based on e.
• root ∈ G; the root of the goal model.

We organize our roles using a role model that connects the various roles by
protocols. There are two types of roles: internal roles and external roles. Internal
roles are the typical roles defined inside the organization. External roles are
placeholders for roles from an external organization; they represent unknown
roles with which the organization must interface. Eventually external roles will
be replaced by concrete roles (internal roles) from other organizations. We define
our role model RM as a tuple 〈R, P, participants〉 where:

• R: set of internal and external roles
• P: set of protocols
• participants:P → 2R×R; indicates the set of role pairs connected by a protocol

Finally, we define a multiagent organization org as a tuple 〈GM, RM,
achieves, INCP, OUTCP 〉 where:

• GM: Goal Model
• RM: Role Model
• achieves: R → 2GL ; indicates the set of leaf goals achieved by given a role.
• INCP: the set of entry connection points exposed by the organization (see

Section 4.3).
• OUTCP: the set of exit connection points exposed by the organization (see

Section 4.3)

4 Service Model

In our framework, services are common functionalities encapsulated in
OMAS components. Once designed, OMAS components can be used by other
organizations to build larger systems. Fig. 1 shows our metamodel, comprising
the service and organizational entities along with their relationships. The central
concept is that of Service. Services offer one or more operations. Each operation
possesses a connector that is used to connect connection points exposed by

www.manaraa.com

Exploiting Reusable Organizations to Reduce Complexity in MAS Design 7

achievesRole GoalProtocol

Organization

participants

Service
Provider

Service
Consumer

Service

Operation

1..*

provides uses

1

Connection
Point

Event

1

generates

1

exposes

1..* 1..*

1

provides *

*

0..1 1..*

2

uses

*

*

Connector

*

Fig. 1. Organizational Service Metamodel

organizations. Connection points are goals and roles that can be bound together
by events and protocols from connectors. Service providers and service consumers
are both autonomous organizations who respectively provide and use operations
from services. These entities are discussed in detail in the following subsections.

4.1 Services

A service is a logical entity that represents a coarse-grained multiagent
functionality. This coarse-grained functionality is made of a set of fine-grained
functionalities, called operations. Each service possesses an XML-based speci-
fication that contains a description of what the service proposes and provides
a specification of each operation provided. To be functional, a service must be
implemented by at least one provider. Services facilitate reuse in that they allow
consumers to request operations based solely on the service specification.

4.2 Operations and Connectors

An operation represents an implementation of a functionality declared in a
service. From an organizational standpoint, we view an operation as a set of
application-specific organizational goals that an organization needs to achieve
in order to reach a desired state. Operations can result in computations (e.g.
computing an optimal path for a swarm of UAVs) or actions (e.g. neutralizing
an enemy target).

Each operation has a set of preconditions and postconditions, an interaction
protocol, and a request event. The request event is used to invoke the operation
and includes the parameters passed to the operation at initialization. Once the
operation is instantiated, the interaction occurs via the interaction protocol,
which specifies the legal interactions between consumers and providers. The
interaction protocol and the request event form a connector, which provides
the ”glue” that binds consumers and providers together.

www.manaraa.com

8 W.H. Oyenan, S.A. DeLoach, and G. Singh

4.3 Connection Points

A connection point is a logical construct associated with an operation. It is
composed of a goal-role pair. There are two types of connection points: entry
and exit connection points. An entry connection point guarantees a proper
execution of the operation it provides. Its goal and role components are called
the entry goal and entry role respectively. The set of entry connection points
of an organization is denoted by INCP. We say that an entry connection point
provides an operation if its entry goal is instantiated based on the occurrence of
the request event of that operation and its entry role engages with an external
role in the interaction protocol defined for that operation. An exit connection
point guarantees a proper request of the operation it uses. Its goal and role
components are called the exit goal and exit role respectively. The set of exit
connection points of an organization is denoted by OUTCP. We say that an
exit connection point uses an operation if its exit goal generates a goal trigger
based on the request event of that operation and if its exit role engages with
an external role in the interaction protocol defined for that operation (Fig. 2).
Hence, a connection point role is an organizational role that would need to be
played by an agent in order to achieve the corresponding connection point goal.

4.4 Service Providers

A service provider is an organization (OMAS component) that provides all the
operations of a particular service. We say that an organization provides a service
if, for all operations of the service, it exposes a unique entry connection point
providing that operation. In addition, a service provider needs to be designed
such that whenever an operation is requested and its preconditions are met, it
pursues a set of its goals whose achievement satisfies the postconditions of that
operation. As for any goal failures in OMACS, operation failures result in an
autonomous reorganization in an attempt to overcome the failure [17].

4.5 Service Consumer

A service consumer is an organization (OMAS component) that uses one or
more operations from various services. To use an operation, an organization
needs to exposes at least one exit connection point using that operation. For
each operation used, service consumers can expose multiple connection points.
Designers of service consumers choose the operations they need based on the
service specification that describes what each of its operation is suppose to do.

5 Composition of Services

Composition is a design-time process that binds a consumer organization with
a provider in order to create a single composite organization. This process is
illustrated in Fig. 2. Basically, given an operation, the composition process

www.manaraa.com

Exploiting Reusable Organizations to Reduce Complexity in MAS Design 9

Service
Consumer

Service
Provider 1

Exit
Goal

Exit
Role

Entry
Goal

Entry
Role

Operation 1 Operation 1
Interaction
Protocol

Request
Event

Exit
Goal

Exit
Role

Entry
Goal

Entry
Role

Operation 2 Operation 2
Interaction
Protocol

Request
Event

Service
Provider 2

Exit Connection
Points

Entry Connection
Points

Connectors

uses

uses

provides

provides

Fig. 2. Composition of Organizations through connection points and connectors

connects the exit connection point of a consumer to the entry connection point
of a provider using the operation’s connector. This interconnection ensures that
the consumer organization can invoke the operation via the request event and
that both organizations can interact via the interaction protocol. Formally, the
composition of organizations org1 with org2 over a connection point cp1 requiring
an operation op is defined whenever cp1 is an exit connection point from org1
using op and org2 exposes a connection point cp2 providing op. This composition
is denoted org1 �cp1,op org2.

Sometimes, designers may want to compose all exit connection points using
the same operation from only one provider. Thus, we define the composition of
two organizations over an operation as their successive compositions over all the
exit connection points requiring that operation. Hence, for all connection points
cpi from org1 using an operation op, we have:

org1 �op org2 = (...((org1 �cp1,op org2) �cp2,op org2) �... ... �cpn,op org2).

The composition process is iterative and continues until the resulting
composite organization requires no more operations. The result is a standalone
application that uses no external services. Having a single organization
simplifies reorganization tasks by allowing us to reuse existing work concerning
reorganization of single organizations [20, 21, 26].

Next, we formally define the composition process through which reusable
OMAS components can be composed to build larger organizations. We have
a proof sketch that shows this composition will always be correct under certain
conditions, but space would not permit us to put any details in the paper.

Given two organizations org1 = 〈GM1, RM1, achieves1, INCP1, OUTCP1〉,
org2 = 〈GM2, RM2, achieves2, INCP2, OUTCP2〉 , an operation op and two
connection points cp1 from org1 and cp2 from org2 such that cp1 uses op and
cp2 provides op. Given that org3 = 〈GM, RM, achieves, INCP, OUTCP 〉, such
that org3 = org1 �cp1,op org2, we define the composite organization org3 in the
next subsections.

www.manaraa.com

10 W.H. Oyenan, S.A. DeLoach, and G. Singh

g1

GR

g3 g5

g4

trigger1

op.event

g2

g1

GR

g3 g5

g4

g6 g5

g4

g6

trigger1 op.event

GR

g2 g6g7 g7

op.event

GM1 GM2 GM3

r1 r2 r3
p1

r1
p3

r1 r2

r3

p1

p3
op.protocol

op.protocol op.protocol

RM1 RM2 RM3

e1 e2

(a) (b)

Fig. 3. Merging goal models (a) and role models (b)

5.1 Goal Model Composition

Without loss of generality, we assume that all goal models have the same
root, which is an AND-decomposed goal called the generic root (GR).
Moreover, we consider that two goals are equal if they are identical and
their parents are identical. This definition of equality of goals ensures that
the union of two goal trees is a tree instead of a graph. Given two goal
models GM1 = 〈G1, Ev1, parent1, precedes1, triggers1, GR〉, and GM2 =
〈G2, Ev2, parent2, precedes2, triggers2, GR〉, we define the composite goal model
GM = 〈G, Ev, parent, precedes, triggers, root〉 such that:

root = GR, G = G1 ∪ G2, Ev = Ev1 ∪ Ev2,
parent: ∀g ∈ G, parent(g) = parent1(g) ∪ parent2(g),
precedes: ∀g ∈ G, precedes(g) = precedes1(g) ∪ precedes2(g),
triggers: ∀e ∈ Ev, triggers(e)=

=

⎧
⎪⎨

⎪⎩

triggers1(e) ∪ triggers2(e) if e 	= op.event,
triggers1(e) ∪ triggers2(e) ∪ {(cp1.goal, cp2.goal)}

−{(cp1.goal, ∅), (∅, cp2.goal)} if e = op.event.

Note that cp1.goal is an exit goal in GM1 and cp2.goal is an entry goal in GM2.
The composition is illustrated in Fig. 3a, where g2 is an exit goal and g6 is an
entry goal.

5.2 Role Model Composition

Given RM1 = 〈R1, P1, participants1〉, RM2 = 〈R2, P2, participants2〉 , let e1
and e2 be two external roles such that (cp1.role, e1) ∈ participants1(op.protocol)
and (e2, cp2.role) ∈ participants2(op.protocol), where cp1.role is an exit role in
RM1 and cp2.role is an entry role in RM2. We define RM = 〈R, P, participants〉
such that:

R = R1 ∪ R2 − {e1, e2}, P = P1 ∪ P2,
participants: ∀p ∈ P , participants(p)=

=

⎧
⎪⎨

⎪⎩

participants1(p) ∪ participants2(p) if p �= op.protocol,
participants1(p) ∪ participants2(p) ∪ {(cp1.role, cp2.role)}

−{(cp1.role, e1), (e2, cp2.role)} if p = op.protocol.

www.manaraa.com

Exploiting Reusable Organizations to Reduce Complexity in MAS Design 11

The composition of role models we have just described is illustrated in Fig. 3b.
In this figure, role r2 is an exit role and role r3 is an entry role.

5.3 Organization Composition

Finally, to complete org3, we need to define the achieves function along with the
connection points. The achieves function is defined as:

achieves(r) = achieves1(r) ∪ achieves2(r), ∀r ∈ R.

The sets of entry and exit connection points exposed by org3 are:
INCP = INCP1 ∪ INCP2 − {cp2}.
OUTCP =OUTCP1 ∪ OUTCP2 − {cp1}.

6 Case Study

To demonstrate the validity of our framework for designing OMAS, we design
an application called Cooperative Robotic for Airport Management (CRAM).
In this application, a team of heterogeneous robots is in charge of handling some
aspects of the airport management task. Essentially, the team needs to clean the
building and perform cargos inspections. Suspicious cargos are sent to another
location for further inspection.

In our framework, OMAS components can be present in a repository or come
from the decomposition of the current problem. For this example, we develop
one service, the cleaning service, and explain how it can be used to develop our
CRAM application.

In the organization models presented in this example (Fig. 4, Fig. 5, and
Fig. 6), goals are shown as ovals, internal roles as rectangles, external roles as
round rectangles, precedes and triggers functions as open-head arrows, protocols
as full-head arrows and achieves functions as dashed lines. Conjunctive goals
are connected to their subgoals by diamond-shaped links and disjunctive goals

Clean
(Sub_Area)

Clean
Area

Divide Area
(Area)

Mop
(Sub_Area)

Clean
_Protocol

Clean_event

(Are a)

AssignArea
(Sub_Area)

Sweep
(Sub_Area)

Vacuum
(Sub_Area)

Deep Clean
(Sub_Area)Leader

<<requires >>

Divide_Algo
<<provides>>

clean

Sweeper

<<requires >>
Sweep

Mopper

<<requires >>

Mop

Vacuumer

<<requires >>

Vacuum_Cleaner

precedes

E2

Protocol 1

Fig. 4. Cooperative Cleaning organization model

Perform Cargo
Inspection

Manage
Airport

Operate Sanitary
Maintenance

Send for
Inspection

(Cargo)

Screen
All

Cargos

Clean
Floor

Inspect
(cargo)

Transporter

Clean
_Protocol

Dispose
Trash

<<requires>>

Object_
Transportation

Janitor

<<requires>>

Camera
<<uses>>

Cleaning .clean
Screener

<<requires>>
Radiation
_Detector

Trash Collector

<<requires >>
Object_

transportation E1

Fig. 5. CRAM organization model

www.manaraa.com

12 W.H. Oyenan, S.A. DeLoach, and G. Singh

by triangle-shaped links. Entry goals are identified by being the destination
of a trigger that has no source. Exit goals are always the leaf goals achieved
by exit roles. In the role models, agent capabilities [7] are identified by the
keyword ’requires’. Entry roles specify operations provided by using the keyword
’provides’ while exit roles specify operations required by the keyword ’uses’. Due
to space limits, we do not discuss aspects of the organization irrelevant to our
approach.

6.1 The Cleaning Service

Cooperative cleaning is a common problem in cooperative robotics and several
works have been published regarding the use of robots for cleaning [16, 19, 23].
Here, we propose a Cleaning Service whose main operation is to clean a given
area. We design the Cooperative Cleaning Organization, shown in Fig. 4, which
involves a team of robots coordinating their actions to clean an area. Hence, this
OMAS component provides the Cleaning Service. The entry connection point
providing the clean operation is made of the goal Divide Area and the role
Leader. The Divide Area goal is in charge of dividing an area into smaller areas
that can be handled by individual robots. Once the area to be cleaned has been
divided, the Clean goal is triggered. The Clean goal is decomposed into two
disjunctive goals. Hence, it offers two ways of cleaning; the organization can
decide to either do a deep clean (Deep Clean goal) or just vacuum (Vacuum
goal). The Deep Clean goal is further decomposed into two conjunctive goals:
Sweep and Mop.

6.2 The Cooperative Robotic for Airport Management Organization

Next, we build the CRAM organization that uses the Cleaning Service. Its design
is presented in Fig. 5. The main goal of the system, Manage Airport, has two
conjunctive subgoals that represent the two main tasks of our system: Per-
form Cargo Inspection, Operate Sanitary Maintenance. Those goals are in turn
further decomposed into conjunctive leaf goals. For each leaf goal in the CRAM
organization, we design a role that can achieve it. Moreover, we identify that
the Janitor role can use the Cleaning Service for the achievement of the Clean
Floor goal. Thereby, the organization created contains the exit connection point
(identified as goal-role pair): 〈CleanF loor, Janitor〉.

6.3 The Composition Process

In this section, we compose the CRAM application with the cleaning component
in order to obtain a single composite organization. The CRAM uses the clean
operation from the Cleaning Service that is provided by the Cooperative Cleaning
organization. Let cram and cleaning be the CRAM and Cooperative Cleaning
organizations respectively and let cp Janit and cp Lead be the connection

www.manaraa.com

Exploiting Reusable Organizations to Reduce Complexity in MAS Design 13

Perform Cargo
Inspection

Manage Airport

Operate Sanitary
Maintenance

Send for
Inspection
(Cargo)

Screen All
Cargos

Clean
Floors

Inspect
(cargo)

Transporter

Dispose
Trash

<<requires>>
Object_

Transportation

Janitor

<<requires>>
Camera

<<uses>>
Cleaning.clean

Screener

<<requires>>
Radiation
_Detector

Trash Collector

<<requires>>
Object_

Transportation

Clean
(Sub_Area)

Clean Area

Divide Area
(Area)

Mop
(Sub_Area)

Clean
_Protocol

AssignArea
(Sub_Area)

Sweep
(Sub_Area)

Vacuum
(Sub_Area)

Deep Clean
(Sub_Area)

Leader

<<requires>>
Divide_Algo

<<provides>>
clean

Sweeper

<<requires>>
Sweep

Mopper

<<requires>>
Mop

Vacuumer

<<requires>>
Vacuum_
Cleaner

precedes

protocol1

Generic Root

Clean_event
(Area)

Fig. 6. Organization model obtained by composition of cram and cleaning over the
clean operation

points 〈CleanF loor, Janitor〉 from cram and 〈DivideArea, Leader〉 from clean-
ing respectively. We have:

cleaning = 〈gm svc, rm svc, achieves svc, incp svc, outcp svc〉 ,
where goal model gm svc, role model rm svc and achieves function achieves svc
are defined as described in Fig. 4, entry connection points set incp svc =
{cp Lead}, and exit connection points set outcp svc = {}.

cram = 〈gm app, rm app, achieves app, incp app, outcp app〉,
where goal model gm app, role model rm app and achieves function achieves app
are defined as described in Fig. 5, entry connection points set incp app = {},
and exit connection points set outcp app = {cp Janit}.
By composing cram with cleaning over operation clean, we have:

cram �clean cleaning = cram �cp Janit,clean cleaning = cram clean,
such that cram clean = 〈gm, rm, achieves, incp, outcp〉 , where:

gm, rm, achieves are defined as described in Fig. 6,
incp = incp app ∪ incp svc − {cp Lead} = {},
outcp = outcp app ∪ outcp svc − {cp Janit} = {}.

Hence, by composing the cram and cleaning organizations (Fig. 4 and Fig. 5) over
the clean operation specified in the Cleaning Service, we obtain the composed
organization cram clean modeled in Fig. 6.

6.4 Implementation Overview

In this section, we give a brief overview of how the composite organization
is implemented. Our implementation is based on design models obtained

www.manaraa.com

14 W.H. Oyenan, S.A. DeLoach, and G. Singh

from the Organization-based Multiagent System Engineering (O-MaSE) process
framework [10], which allows designers to create custom agent-oriented
development processes. The implementation of the CRAM organization is based
on several design models: the goal model and role model obtained from the
composition process as shown in Fig. 6, and an agent model, a capability model,
a protocol model and a plan model. However, depending on the actual process
used, some of those models are optional [10]. The Capability Model identifies
the capabilities and specifies their actions on the environment as state machines.
The Agent Model captures agent types, along with the capabilities they posses.
The Protocol Model specifies all the protocols that will be executed by agents
enacting their assigned roles. Finally, the Plan Model provides a plan that agents
execute in order to play a certain role. Plans are expressed as state machines.

At runtime, four main components allow the system to be autonomous and
adapt to its environment. Those components are part of the Control Component
of an agent (Fig. 7). The Goal Reasoning takes the goal model as input and
tells the system which goals are active and can be pursued by the organization.
Details about this component can be found in [6]. The Organization Model stores
all the knowledge about the structure of the organization [5]. The Reorganization
Algorithm takes as input a set of active goals and returns a set of assignments
[26]. An assignment assigns an agent to play a role in order to achieve a particular
goal. Assignments are made based on the capability possessed by agents and
some utilities functions. Once an agent has been assigned to play a role, it
follows the role’s plan in order to achieve its goal. Further details about how
assignments are made can be found in [7]. The Goal Reasoning component and
the Reorganization algorithm can be implemented in a centralized or distributed

Goal Reasoning
OMACS Organization

Model

Reorganization
Algorithm

Reasoning Algorithm

Agent Control Algorithm

Role A

Role B

events access/update

uses

assignments events

plays

plays

Capability 1

Capability 2

Capability n

uses

uses

Control Component

Execution Component

goals

Fig. 7. Organization-based Agent Architecture

www.manaraa.com

Exploiting Reusable Organizations to Reduce Complexity in MAS Design 15

way. In a centralized version, only one agent is in charge of the organization. In
a distributed version, all agents participate in the organization decision process.
Finally, the Reasoning Algorithm interacts with the other components in order to
make decisions about the next state of the organization [5]. All decisions taken at
the Control Component level are passed on to the Execution Component that is
in charge of executing the appropriate roles while using the required capabilities
(Fig. 7).

For brevity, we only describe partially the runtime of the model shown in
Fig. 6. Detailed implementations of similar OMACS-based systems have been
presented in our previous work [7, 17]. During the execution, the goal Clean
Floor eventually becomes active. A reorganization then occurs which results in
the assignment of an agent (say the Maintenance agent) to play the Janitor role
to achieve the newly created Clean Floor goal. During the enactment of the Jan-
itor role, the event clean event (cf. Fig. 6) occurs whenever an area that needs to
be cleaned is detected. This event results in the creation of the goal Divide Area,
which is the entry point of the clean service. Hence, the trigger acts as a request
for the clean service. After reorganization, the Divide Area goal is assigned to
an agent (say Clean Manager agent) playing the Leader role. The Clean Man-
ager agent plays its role by dividing the area to be cleaned into subareas. Each
subarea will be eventually assigned to an agent and when all agents complete, the
area is clean. The Manager agent (part of the Service Provider organization) can
then notify the Maintenance agent (part of the Service Consumer organization)
through the protocol clean protocol (cf. Fig. 6). At the same time, the Main-
tenance agent can continue looking for other areas to clean and request the
cleaning service as often as necessary.

7 Conclusion and Future Work

We have presented an approach to support the development of complex OMAS
by developing reusable OMAS components. While many current approaches use
decomposition to support separation of concerns at design, they lack effective
support for the composition process to recombine the sub-organizations. Our
approach defines a composition framework that allows MAS designers to reuse
predefined OMAS modeled as components. We described how to design OMAS
components so they expose the necessary interfaces to potential consumers so they
can request the desired operations. Moreover, we presented a composition process
that combines multiple multiagent organizations into a single organization.
Finally, we illustrated our approach by composing a Cooperative Robotic Airport
Management application with a multiagent cleaning service to produce a single
complete system design.

A significant advantage of our approach is the ability to compose multiagent
organizations to develop a wide variety of complex applications. In addition,
independent OMAS components are easily modifiable, offer a better approach
to reusability of design models, help reduce development time and provide better
structuring of large and complex MAS. Designers have more flexibility as service
providers can easily be replaced with little or no change in the core organization.

www.manaraa.com

16 W.H. Oyenan, S.A. DeLoach, and G. Singh

We are currently working on extending the O-MaSE process framework [10]
and the agentTool (aT3) development environment [4] to support the systematic
design of OMAS by using our compositional approach. We are also interested in
offline exploration of alternative designs created using different service providers
and verifying them for robustness, flexibility and efficiency. Having predictive
data on the quality of alternate designs will help designers choose the best service
providers for their applications.

References

1. Brazier, F.M.T., et al.: DESIRE: Modelling Multi-Agent Systems in a Composi-
tional Formal Framework. IJCIS 6(1), 67–94 (1997)

2. Cao, L., Zhang, C., Zhou, M.: Engineering Open Complex Agent Systems: A Case
Study. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews 38(4), 483–496 (2008)

3. Cossentino, M., et al.: A holonic metamodel for agent-oriented analysis and design.
In: Mař́ık, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS 2007. LNCS (LNAI),
vol. 4659, pp. 237–246. Springer, Heidelberg (2007)

4. DeLoach, S.A.: The agentTool III Project,
http://agenttool.cis.ksu.edu/ (cited 2009)

5. DeLoach, S.A.: OMACS: a Framework for Adaptive, Complex Systems. In:
Dignum, V. (ed.) Multi-Agent Systems: Semantics and Dynamics of Organizational
Models. IGI Global, Hershey (2009)

6. DeLoach, S.A., Miller, M.: A Goal Model for Adaptive Complex Systems. In: Inter-
national Conference on Knowledge-Intensive Multi-Agent Systems (KIMAS 2009),
St. Louis, MO, October 11-14 (2009)

7. DeLoach, S.A., Oyenan, W.H., Matson, E.: A capabilities-based model for adaptive
organizations. Autonomous Agents and Multi-Agent Systems 16(1), 13–56 (2008)

8. Estefania, A., Vicente, J., Vicente, B.: Multi-Agent System Development Based
on Organizations. Electronic Notes in Theoretical Computer Science 150(3), 55–71
(2006)

9. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 443–459. Springer, Heidelberg (2004)

10. Garcia-Ojeda, J.C., et al.: O-maSE: A customizable approach to developing mul-
tiagent development processes. In: Luck, M., Padgham, L. (eds.) Agent-Oriented
Software Engineering VIII. LNCS, vol. 4951, pp. 1–15. Springer, Heidelberg (2008)

11. Huget, M.P.: Representing Goals in Multiagent Systems. In: Proc. 4th Int’l Symp.
Agent Theory to Agent Implementation, pp. 588–593 (2004)

12. Huhns, M.N., Singh, M.P.: Service-oriented computing: key concepts and princi-
ples. IEEE Internet Computing 9(1), 75–81 (2005)

13. Huhns, M.N., et al.: Research Directions for Service-Oriented Multiagent Systems.
IEEE Internet Computing 9(6), 65–70 (2005)

14. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001)

15. Juan, T., Pearce, A., Sterling, L.: ROADMAP: extending the gaia methodology for
complex open systems. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems: Part 1, pp. 3–10. ACM, Bologna
(2002)

http://agenttool.cis.ksu.edu/

www.manaraa.com

Exploiting Reusable Organizations to Reduce Complexity in MAS Design 17

16. Luo, C., Yang, S.X.: A real-time cooperative sweeping strategy for multiple cleaning
robots. In: Proceedings of the 2002 IEEE International Symposium on Intelligent
Control, pp. 660–665 (2002)

17. Oyenan, W.H., DeLoach, S.A.: Design and Evaluation of a Multiagent Autonomic
Information System. In: Proceedings of the 2007 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (2007)

18. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelli-
gent agents. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 174–185. Springer, Heidelberg (2003)

19. Parker, L.E.: ALLIANCE: an architecture for fault tolerant multirobot coopera-
tion. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)

20. Harmon, S.J., et al.: Leveraging Organizational Guidance Policies with Learning
to Self-Tune Multiagent Systems. In: The Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (2008)

21. Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 16(2), 151–185 (2008)

22. van Lamsweerde, A., et al.: The KAOS Project: Knowledge Acquisition in Auto-
mated Specification of Software. In: Proceedings AAAI Spring Symposium Series,
pp. 59–62 (1991)

23. Wagner, I.A., et al.: Cooperative Cleaners: A Study in Ant Robotics. Int. J. Rob.
Res. 27(1), 127–151 (2008)

24. Wood, M.F., DeLoach, S.A.: An overview of the multiagent systems engineer-
ing methodology. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 207–221. Springer, Heidelberg (2001)

25. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

26. Zhong, C., DeLoach, S.A.: An Investigation of Reorganization Algorithms. In:
International Conference on Artificial Intelligence (IC-AI 2006). CSREA Press,
Las Vegas (2006)

www.manaraa.com

A Formal Specification for
Organizational Adaptation

Huib Aldewereld, Frank Dignum, Virginia Dignum, and Loris Penserini

Institute of Information and Computing Sciences
Universiteit Utrecht - P.O. Box 80089, 3508 TB Utrecht - The Netherlands

{huib,dignum,virginia,loris}@cs.uu.nl

Abstract. Agent organizations are a good means to guarantee certain system ob-
jectives in the context of autonomous, self adapting agents. However, in highly
dynamic environments such as in crisis management where different organiza-
tions have to cooperate flexibly and efficiently, the organizational structure itself
should also be adaptable to the circumstances. In this paper we distinguish differ-
ent types of context changes and the way organizations can adapt to such changes.
We give a formal description —of both organizations and the changes— which
facilitates proving that certain features remain stable throughout the life cycle of
the organization or are justifiable changes.

1 Introduction

Software system development for complex applications requires approaches that take
into account organizational and social issues, such as control, dependencies and struc-
tural changes. Often, the agent paradigm is proposed for these situations [2,18,11,15].
Nevertheless, typical agent-oriented software engineering approaches are often not well
suited to deal with organizational changes and the resulting need for adaptation. Adap-
tation issues are often ignored, only treated implicitly, or require complete (offline) sys-
tem redesign. In particular, only a few methodologies have considered organizational
and social abstractions as key architectural and coordination requirements for multi-
agent systems (MAS), e.g., see [2,18,15].

Following the idea of autonomic computing publicized by IBM [8,12], recent soft-
ware engineering approaches have focused on the design of single (agent-based) sys-
tems with the ability to cope with context changes. However, in complex domains,
adaptation can be easier and better studied and handled at an organizational level of ab-
straction [10]. In this paper, we propose ways to deal with the challenge of adaptation
at the organizational level within a software development framework.

The work reported in this paper is part of the general development framework within
the European FP7 project ALIVE. As illustration, we adopt a simplified version from
the Crisis Management case studied in ALIVE. Due to the high variability of social
dependencies and responsibilities among roles, these scenarios are very suitable to study
adaptation to context changes.

We use the OperA framework [2,14] that provides social abstractions to study and
design organizations of agent societies. The OperA model includes three components:

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 18–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

A Formal Specification for Organizational Adaptation 19

the organizational model, the social model, and the interaction model. This paper fo-
cuses on structural adaptation to context changes, using the OperA organizational model
as basis for analysis and design. We provide a formal interpretation of the adaptation
process for organizations, based on the Logic for Agent Organizations (LAO) [3,5].

The aim of our work is modeling context changes that affect organizational struc-
tures and agents’ social and intentional relationships. The formal specification of or-
ganizations enables the description and analysis of adaptation which contributes to the
(automatic) redesign of structures.

The paper is structured as follows. Section 2 describes the basic notions of the for-
mal specification for agent organizations adopted in our design framework, and gives an
overview about the OperA methodology, applying it to a crisis management scenario.
Section 3 discusses different forms of adaptation that may affect organization struc-
tures. Section 4 defines the adaptation of organization structures by the use of a formal
specification. In Section 5 some related work is given. Finally, Section 6 gives some
conclusions and points out main future work directions.

2 Background

2.1 The ALIVE Project

Currently, there is a general feeling that networked applications based on the notion
of software services will make it possible to radically create new types of software
systems. However, the deployment of such applications will require profound changes
in the way in which software systems are designed, deployed and managed.

The ALIVE project [1] aims to contribute to this development by the application of
strategies used today to organize the vastly complex interdependencies found in hu-
man social, economic behaviour to the structuring and design of future service-based
software systems. More specifically, the project aims to combine coordination and or-
ganisational mechanisms and Model Driven Design to create a framework for software
and service engineering for “live” open systems of active services.

The project extends current trends in service-oriented engineering by adding three
extra levels (see Figure 1).

– The Service level augments and extends existing service models with semantic de-
scriptions to make components aware of their social context and of engagement
rules with other services.

– The Coordination level provides the means to specify, at a high level, interaction
patterns between services, using a variety of powerful coordination techniques from
recent European research in the area.

– The Organisation level provides context for the other levels – specifying the or-
ganizational rules that govern interactions and using recent developments in orga-
nizational dynamics to allow the structural adaptation of distributed systems over
time.

www.manaraa.com

20 H. Aldewereld et al.

role

rolerole role

actor

actor
actor

actor

Organisational level

Coordination level

Service level

SD
SD

SD

SD

SD

SD

WS
WS

WS

WS

WS

WS

Form
al Fram

ework

M
odel-Driven Engineering

Fig. 1. The ALIVEframework for software and service engineering

2.2 A Formal Model for Organizations

As basis for the specification of organizational adaptation, we use the formal modal
Logic for Agent Organizations – LAO [3]. LAO provides a formal definition of organi-
zations, based on the main concepts of structure, environment and agent [17]. In LAO,
agents are seen as actors that make possible the achievement of organizational objec-
tives1. LAO is an extension of the well known branching time temporal logic CTL [7].
It includes the CTL modalities � (‘always in the future’), ♦ (‘eventually in the future’),◦ (‘in the next state’) extended with modalities for agent ability, capability, attempt and
activity which we discuss below.

Given a world w ∈ W that represents a possible state of affairs, an organization Ow

is defined as

Ow = {Aw
O,≤w

O, Dw
O, Sw

O}
where AO is a set of agents, ≤O a partial order relation on AO reflecting the social
dependencies among actors of the organization, DO is a set of objectives (states of
affairs to achieve), and SO is the set of current assets and characteristics of O, e.g.,
capabilities, activities, responsibilities, etc.

Given a set of atomic propositions Φ, for each agent a we partition Φ in two classes:
the set of atomic propositions that agent a is capable of realizing, Ca (⊆ Φ), and the
set of atomic propositions that a cannot realize, C̄a, C̄a = Φ \ Ca. The composition
of atomic propositions of an agent a ∈ AO , i.e., the set of its complex propositions, is
called Σa.

1 Even though organizational structures are typical defined in terms of roles, specifying and
distributing responsibilities and objectives among roles, for simplicity sake [3] abstracts from
the role concept, only considering role enacting agent, an agent that plays one role.

www.manaraa.com

A Formal Specification for Organizational Adaptation 21

Definition 1. (Agent Capability)
Given formula ϕ in the language and an agent a ∈ AO , agent a is capable of ϕ,
represented by Caϕ iff � ϕ and ∃ψ ∈ Σa, such that |= ψ → ϕ.

Intuitively, Caϕ means that a can control ϕ, which means that a is able (under certain
conditions) to make it the case that ϕ. Note that, the notion of capability gives only a
static description of an agent’s ability, namely, the necessary condition to realize ϕ. At
any given moment, only the combination of the capability plus the opportunity (e.g.,
preconditions) leads to the agent’s ability, represented by Gaϕ. The opportunity is rep-
resented in the semantics by a set of all transitions in which a takes part (influences the
result) Taw.

Moreover, while the agent ability (Gaϕ) allows the agent to achieve ϕ in a next
state, it does not express that the agent will act to achieve ϕ. The latter is named agent
attempt, represented by Haϕ. Finally, we introduce the definition of agent activity, stit
(see to it that). Formally,

Definition 2 (Agent Ability, Attempt and Activity). Given an agent a ∈ A, agent
ability, Gaϕ, agent attempt, Haϕ, agent control, ICaϕ, and agent activity, Eaϕ, are
defined as:

Ga: w |= Gaϕ iff w |= Caϕ and ∃(w, w′) ∈ Taw : w′ |= ϕ
Ha: w |= Haϕ iff w |= Gaϕ and ∀(w, w′) ∈ Taw : w′ |= ϕ
ICa: w |= ICa iff ∀w′ : (w, w′) ∈ R ⇒ (w, w′) ∈ Taw

Ea: w |= Eaϕ iff w |= Haϕ ∧ ICa

Agent activity is represented by Eaϕ. Intuitively, Eaϕ represents the actual action of
bringing ϕ about, namely, agent a can ‘cause’ ϕ to be true in all the next states from the
current one. The formalization of Eaϕ is based on the stit operator, originally defined
in [16].

Another important aspect to be considered is the way organizations deal with com-
plex objectives (which are often not achievable by any single agent) that require the
coordination of different agents according to their skills and responsibilities. In the def-
inition of organization above, the dependency between two agents (a and b), represented
by a ≤O b, indicates that a is able to delegate some state of affairs to agent b. The de-
pendency relation also allows an agent for delegation of responsibility, as follows.

Definition 3. (Agent Responsibility)
Given an organization O = {AO,≤O, DO, SO} and an agent a ∈ AO , the responsi-
bility Raϕ is defined as: Raϕ ≡ ♦Haϕ ∨ ♦HaRbϕ, for some b ∈ AO.

Informally, Raϕ means that a has to make sure that a certain state of affair is (eventu-
ally) achieved, either by realizing it itself or by delegating that result to others. Notice
that, responsibility does not guarantee the achievement of the underlying state of affair.
From the above considerations, the structural dependency (CaRbϕ) is straightforward:
if(a ≤O b) then CaRbϕ, namely, a is capable to delegate ϕ to b.

Finally, we consider the formal specification of structural changes. Re-organization
activities imply changes within the organizational structure, such as modifications over
objectives, agents, and structural dependencies. Within the formal model, these modifi-
cations are represented as follows [5].

www.manaraa.com

22 H. Aldewereld et al.

Firefighter_
Team

Fire_Station

Firefighting
_Truck

Emergency
_Call_Center

Police_Station

First_Aid_
Station

(ef) (el)

(fs)

(ecc)(ft)

(fft)

(dbf)(dt)

(ps)

(as)(fas)

Fig. 2. Social Structure diagram: Fire Station organization (O) example

Definition 4. In the following reorganization operations in O = {AO,≤O, DO, SO}
are presented:

– Staffing: Changes on the set of agents: adding new agents, or deleting agents from
the set. Corresponding to personnel activities in human organizations (hiring, firing
and training). Represented by staff+(O, a) and staff−(O, a).

– Structuring: Changes on the ordering structure of the organization. Corresponding
to infrastructural changes in human organizations: e.g. changes in composition of
departments or positions. Represented by struct+(O, a ≤ b) and struct−(O, a ≤
b).

– Strategy: Changes on the objectives of the organization: adding or deleting de-
sired states. Corresponding to strategic (or second-order) changes in human or-
ganizations: modifications on the mission, vision, or charter of the organization.
Represented by strateg+(O, d) and strateg−(O, d).

– Duty: Changes the responsibilities in the organization in correspondence to
duty assignments in human relations. Represented by duty+(Oi, a, ϕ) and
duty−(Oi, a, ϕ)

– Learn: Changes the knowledge (state of affairs) of the organization in correspon-
dence to the change of experiences, knowledge and learning in human organiza-
tions Represented by learn+(Oi, ϕ) and learn−(Oi, ϕ)

2.3 A Methodological Context

Using an example taken from the Dutch procedures for crisis management, we elaborate
how changes in the environment affect organizations. The modelling phase is conducted
according to the OperA methodology [2] using the OperettA tool [14] for the depicted
diagrams. We describe how, due to the changes in the environment, the organization
is forced to reorganize and what changes to its norms are required. The organizational
and social structure diagram of Figure 2 represents the crisis management organization.
This diagram shows the responsibilities and commitments of each participant, e.g., in
case of an emergency call, the Fire Station is dependent on Emergency Call Center
to be informed about the disaster location. For the sake of simplicity, we consider that

www.manaraa.com

A Formal Specification for Organizational Adaptation 23

Firefighter Team sets up a strategic intervention (to achieve its primary objective ex-
tinguish fire) on the results of two evaluation criteria: damage evaluation and fire eval-
uation. From the former criterion, Firefighter Team checks how many wounded there
are in order to come up with information about the necessity or not to ask for ambu-
lance service. Moreover, the Firefighter Team checks if the damage involves build-
ing structures that may collapse, causing obstacles and risks for drivers on the roads,
e.g., this may also imply police intervention to deviate traffic in safe directions. From
the fire evaluation criterion, Firefighter Team can decide whether it is the case or not
to ask Fire Station for a Firefighting Truck intervention.

Fig. 3. Interaction Structure diagram: Fire Station example

The social structure in figure 2 describes organizational objectives and social respon-
sibilities between organizational roles, but it gives no indication of how organizational
goals can be achieved and interactions planned. This is represented in the interaction
structure diagrams, which provide a partial order on how to fulfil responsibilities and to
achieve objectives as depicted in Figure 3. The sequence of scenes depicted indicates
how to cope with an emergency call, e.g., the Fire Station’s responsibility to build up
a fire brigade each time an emergency call occurs (scene SetUpFiremanTeam) and
the Firefighter Team’s responsibility of reporting on and taking decisions about the
running accident (scene EvaluateImpact). OperA enables designers to further detail
each scene in terms of involved organizational roles along their objectives and respon-
sibilities, norms that have to be considered to correctly achieve objectives, and expected
results at the end of the scene execution.

3 Forms of Organizational Structure Adaptation

In order to keep effective, organizations must strive to maintain a good fit in a changing
environment. Changes in the environment lead to alterations on the effectiveness of the
organization and therefore to the need to reorganize, or in the least, to the need to con-
sider the consequences of that change to the organization’s effectiveness and efficiency.
On the other hand, organizations are active entities, capable not only of adapting to
the environment but also of changing that environment. This means that organizations

www.manaraa.com

24 H. Aldewereld et al.

are in state of, to a certain degree, altering environment conditions to meet their aims
and requirements, which leads to the question of how and why reorganization decisions
should be reached. The flexibility of an organization is defined as the combination of
the changeability of an organizational characteristic (structure, technology, culture) and
the capabilities of management to change that characteristic [9].

In Organizational Theory, the concept of adaptation can mean different things, rang-
ing from strategic choice to environmental determinism. Strategic choice refers to the
planned pursuit of ends based on a rational assessment of available means and condi-
tions, resulting on a explicit decision to change the organization. Deterministic views on
adaptation, on the other hand, explain organizational change as (involuntary) response
to environmental requirements. In this paper, we treat adaptation as a design issue that
requires an (explicit) action resulting in the modification of some organizational char-
acteristics. Such decisions can be of two kinds: proactive, preparing the organization in
advance for an expected future, and reactive, making adjustments after the environment
has changed [4].

In terms of the formal model of organizations introduced in the following section,
changes are represented as (temporal) transitions between two different worlds. Given a
world w ∈ W , many different events may happen that change some proposition in that
world resulting in a different world (the relation T between two worlds represents this).
Because not all parameters in w are controllable by the organization, the current state
of the organization is not necessarily, and in fact in most cases not, completely con-
trolled by the organization itself. That is, changes are not always an effect of (planned)
organizational activity. We distinguish between exogenous and endogenous change. In
the exogenous situation, changes occur outside the control, and independently of the
actions, of the agents in the organization, whereas that in the endogenous case, changes
that are result of activity explicitly taken by agents in the organization.

Contingency theory [6] states that there is no one best way to organize or structure
the organization, but not all structures are equally effective, that is, organizational struc-
ture is one determinant of organizational performance. Performance of the organization
can be seen as the measure to which its objectives are achieved at a certain moment.
Because environments evolve, performance will vary. Many organizational studies are
therefore concerned with the evaluation of performance, identifying triggers for change
and determine the influence of environment change in the organizational performance
and indicating directions to improve performance.

In summary, reorganization consists basically of two activities. Firstly, the formal
representation and evaluation of current organizational state and its ‘distance’ to de-
sired state, and, secondly, the formalization of reorganization strategies, that is, the pur-
poseful change of organizational constituents (structure, agent population, objectives)
in order to make a path to desired state possible and efficient.

4 Towards a Formal Interpretation

A formal model of adaptation enables the (offline) analysis of organization models in
terms of performance and utility, and can also be used to provide (runtime) decision-
making support. In the following, we describe the main aspects of this formal model.

www.manaraa.com

A Formal Specification for Organizational Adaptation 25

The section 4.1 the basic organization model is introduced and in section 4.2 this model
is extended to deal with reorganization issues.

4.1 Formal Organization Model

Based on the formal model [3,5], outlined in Section 2.2, we provide a set of formal
ingredients required to define a formal interpretation for the adaptation of organizational
structures, as informally described in previous sections.

For the sake of simplicity, let us consider that each of the roles of the fire station
organization (O), that is, Fire Station (fs), Firefighter Team (ft),
Emergency Call Centre (ecc), Firefighting Truck (fft), Police Station (ps), and
First Aid Station (fas), is played by a single actor, or role enacting agent. Moreover,
we assume that the organization has the (main) objectives, handle emergency call
(hec), determine emergency location (el), form a brigade (fb), extinguish fire (ef),
and sub-objectives reach the place (rp), how to react (hr), level of emergency
(le), deal with big fire (dbf), deal with traffic (dt), and ask for ambulance service
(as). Therefore,

O = {AO,≤O, DO, S0
O}, where

A = {fs, ft, ecc, fft, ps, fas}
≤O= {fs ≤O ecc, fs ≤O ft, ft ≤O fft, ft ≤O ps, ft ≤O fas}
DO = {hec} = {(el ∧ fb ∧ ef)}
The sets AO, and ≤O provide a formal interpretation of the roles and dependencies
depicted in Figure 2.

DO provides the formal representation of the objectives of the organization. We use
the logical connectives ∧ (and) and ∨ (or) to model sub-objective decomposition, de-
scribing possible ways for objective achievement. Informally, DO means that an emer-
gency call is handled (hec) if location has been identified (el), a rescue team has been
formed (fb) and the fire extinguished (ef). It is important to stress here that objectives
are not actions, but describe desired states of affairs to be achieved. Objectives can
be further decomposed into sub-objectives, e.g. extinguish fire ef = (rp ∧ le ∧ hr),
namely, the fire brigade has to reach the place (rp), establish the accident severity (le)
and then determine the appropriate reaction (hr). Moreover, (sub)objectives can de-
scribe alternative ways of achievement, e.g. hr = {(ef)∨(as∧dbf)∨(as∧dt∧dbf)},
meaning that appropriate ways for a firefighter team to react to a fire are to extinguish it
itself, to ask for ambulance and fire truck assistance, or to ask for ambulance, fire truck
and traffic coordination assistance.

The initial set S0
O describes the capabilities and responsibilities of agents in AO. For

clarity of reading, we split S0
O into two sub-sets S1 and S2 for capabilities and respon-

sibilities, respectively.

S0
O = (S1 ∪ S2), where:

S1 = {Ceccel, Cfsfb, Cftrp, Cftef, Cfthr, Cftle, Cfftdbf, Cpsdt, Cfasas}
S2 = {Rfshec}

www.manaraa.com

26 H. Aldewereld et al.

Given this initial state of affairs, different strategies to realize the organizational objec-
tive handle emergency call (hec) are possible, for example:

s0: Rfshec (organizational fact)
s1: Reccel ∧ Rfsfb (properties of R and fs ≤O ecc)
s2: Rftrp ∧ Rftle ∧ RftRfftdbf (properties of R and fs ≤O ft)
si: ...
sj : Eftle ∧ ... (capabilities of ft)
s3: ...
sn: le ∧ fb ∧ ef → hec

That is, agent fs that enacts the role Fire Station is, by the definition of the organiza-
tion, responsible for the organization objective handle emergency call (hec), and has
delegation power over the agents enacting organizational roles Fire Station (fs) and
Emergency Call Centre (ecc) as depicted in Figure 3 and formalized by the relation
≤O above. Hence, it can transfer the responsibility for organizational sub-objectives
to these agents (cf. state s1). In the same way fs can transfer responsibility for sub-
objectives to ft. Finally, agents can act on their capabilities so that the organizational
objective is achieved.

The formal interpretation above describes the intended meaning defined in the Social
Dependency diagram of Figure 2 and the model annotations provided for each scene.
As discussed before, social structure models do not contain information about ordering
of actions, which is described in interaction structure models. The formal interpreta-
tion of interaction structure information requires the use of branching time logics. For
simplicity sake, we do not consider here the interpretation of the Interaction Structure
diagram of Figure 3.

It is worth noticing that the provided formal model reflects the main idea of the
OperA methodology about the desire to preserve a good trade-off between the organi-
zational specification and the service system flexibility. In other words, despite agents
having to adhere to the organizational specification, these agents still have enough au-
tonomy to achieve organizational objectives in convenient ways. In fact, the formal
specification reflects the same aim, namely, an organizational structure may bring about
different strategies (e.g., s1 and s2), while guaranteeing the achievement of the same
set of objectives. According to each of the causes of context change described by the
examples in the previous sections, we provide a formal interpretation of the required
adaptation process that should be followed by the organization.

4.2 Reorganization Analysis

In the following, we describe the formalization of the different reorganization possibil-
ities discussed in section 3. The reorganization activities described below are depicted
in Figure 4.

Adaptation by re-considering the needs of the context. Imagine that the accident
described in section 2.3 increases in severity. As a consequence, there is a need to

www.manaraa.com

A Formal Specification for Organizational Adaptation 27

dependency creation

& inhibition

Firefighter_
Team

Fire_Station

Firefighting
_Truck

Emergency
_Call_Center

Police_Station

Helicopter_
Firefighting_Team

First_Aid_
Station

(Ex.2)

(Ex.1)
supervising &

objective

inhibition

environment

threaten

(Ex.3)

(Ex.2)

Fig. 4. Structural adaptation, according to scenarios of Example 1 (Ex.1), Example 2 (Ex.2), and
Example 3 (Ex.3)

change the coordination and responsibility functions. As the accident involves several
(autonomous) teams of firefighters, the responsibility of calling ambulance services is
placed with the Fire Station because the Fire Station can better coordinate these ser-
vices over different accident locations.

This context change is modeled by the creation of a dependency between Fire
Station and First Aid Station, as depicted in Figure 4 and removing the current de-
pendency between Firefighter Team and First Aid Station. The formal reorganization
steps that are required for the organization to adapt its structure are the following:

– Rfsstruct−(O, ft ≤O fas), to eliminate the old dependency;
– Rfsstruct+(O, fs ≤O fas), to add the new dependency;

Adaptation by sensing the environment. Let’s now consider that while Firefighter
Team is en route to the accident location (L), a huge traffic jam blocks the quickest
access route and no alternative routes are possible; hence, the objective extinguish fire
is in jeopardy. Moreover, no other cars and trucks are available but there is a helicopter
available and ready for take off.

This change in the environment (symptom) could cause a failure of the objective ex-
tinguish fire if no counter measures (enforcement mechanisms) have been considered
in advance. When no other alternatives are available, the enforcement has to trigger a
new objective, namely, asking for the authority to use the helicopter. Figure 4 shows a
possible modification to adapt to the change, in this case, Firefighter Team collabo-
rates with a new role Helicopter Firefighting Team.

This is the case where environmental changes may lead to potential service system
failures. Hence, the model should include countermeasures, which imply changes in the
initial organizational structure, as illustrated in Figure 4. Formally, the steps required
for the organization to adapt its structure are the following:

www.manaraa.com

28 H. Aldewereld et al.

– Rfsstaff+(O, hft), add a new agent able to enact the role
Helicopter Firefighter Team (hft), this also introduces the responsibility for the
Fire Station to make a helicopter available, e.g., during emergency conditions;

– Rfsstruct+(O, ft ≤O hft), this defines the possibility for the Firefighter Team
to call on Helicopter Firefighter Team (but only during emergency conditions).

– Rftstrateg+(O, atj), where atj is the objective avoid traffic jam, and atj =
((symptom1 ∧ symptom2) → ah). This formalizes the presence of emergency
conditions, namely, the possibility for the agent ft to ask agent hft for help (ah -
ask for help) but only if the two environment symptoms occur.

Adaptation by supervising system services invocation. Finally, assume that Fire
Station has to supervise Firefighter Team movements. Thanks to a GPS locator
system, Fire Station knows whether the Firefighter Team’s achievement of the ob-
jective evaluate fire respects the rule specifying that the accident evaluation must
be done after arriving at the accident location. Therefore, a faulty request from the
Firefighter Team for having support from Firefighting Truck can be suppressed. Or-
ganizational knowledge has a key role in the whole framework, where role and ob-
jective concepts need to be properly grounded in specific system functionalities (e.g.,
agent capabilities). The software agent (or service system) that enacts the role of Fire-
fighter Team has to adhere to the organizational norms, which regulate the service
invocation. These norms have been provided by the designer as a part of the organi-
zational model. Nevertheless, the model should provide an organizational actor with
the responsibility to supervise other actor activities, namely, in Figure 4, Fire Station
supervises the fulfillment of objective deal with big fires.

Service system level should take into account policies specified at the organizational
level. Fire Station agent should be able to supervise the agent Firefighter Team, in
particular when it invokes the service that brings about the objective deal with big fire
(dbf) achievement. In fact, this may be the cause of failure at the service level, e.g.,
due to a wrong pre-condition in service invocation. Therefore, within our formal spec-
ification, we need to define the agent’s ability to supervise specific activities of others
agents, as follows.

Definition 5 (Supervising Ability). Given an organization O = {AO,≤O, DO, SO}
and two agents a, b ∈ AO , the supervising ability of an agent a with respect to another
agent b to realize ϕ is defined as:

SA(a,b)ϕ ≡ RaHbϕ → ♦((Hbϕ∧◦¬ϕ) → Raϕ).

This means that agent a is responsible that agent b attempts to realize ϕ. However,
agent a is directly responsible for the achievement of ϕ every time b’s attempt to realize
ϕ fails. Notice that, contrary to other context changes where the change depends on a
variable that models some domain entities, here, the change depends on how the activity
of another agent is fulfilled. Turning to our example, to effectively deal with the context
change, we need a modification within the initial state S2, adding the new state:
SA(fs,ft)ef , where ef = (rp ∧ le ∧ hr) is the previous objective extinguish fire.

This modification guarantees Fire Station (fs) to be informed every time Fire-
fighter Team (ft) tries to deal with le or hr before achieving reach the place (rp).

www.manaraa.com

A Formal Specification for Organizational Adaptation 29

Notice that, as given by Definition 5, Fire Station becomes directly responsible of ef
in the case Firefighter Team does not succeed to achieve ef . Hence, due to the defini-
tion of responsibility given in Section 2.2, fs can attempt itself to deal with ef or can
attempt to make ft responsible of ef . In the latter case, ft can attempt to realize ef
again.

5 Related Work

A-LTL [19] is an extension of the well known LTL logic. Their approach seems very
suitable (at requirements level) to describe the expected program behavior of an adap-
tive program (e.g., a software agent) in order to enable for checking consistency in
temporal logic specification. We share their idea that the use of temporal logic is a good
way to allow for model checking or other formal verification in the context of adaptive
systems. However, [19] considers (adaptive) programs as state machines, characteriz-
ing the adaptation as a program behavior change during its execution. Our work allows
a more fine-grained requirements specification for agents involved in an organization.
That is, we formalize adaptation (by the use of CTL temporal logic) as changes in the
organization structures in terms of modifications between agent relationships and re-
sponsibilities, as it actually happens in human organizations.

There exist many different agent-oriented software engineering methodologies [11].
Only a few of them (e.g., see [18,15]) have emphasized the importance of organiza-
tional and social abstractions to shape and drive the system architectural and functional
requirements. In [15,13], the Tropos methodology has been enriched to effectively deal
with the development of adaptive systems, allowing designers to endow agents with
adaptation abilities/features without focusing on agents societies. Our proposed frame-
work thus complements the Tropos extension very nicely.

In [10] a good survey about self-organizing mechanisms inspired by social behav-
iors have been described. The authors refer to several kinds of self-organizing behav-
iors, which come from studies of insects and human societies as well as business and
economic organizations, as an important source of inspiration for the development of
adaptive systems. In the same line as the OperA methodology, the authors claim the
need of socially inspired computing metaphors as a new paradigm for adaptive systems
development.

6 Conclusions and Future Work

In this paper, we have studied forms of organizational adaptation to cope with differ-
ent types of context change. The contribution of this paper is twofold: on one side, we
studied and described adaptation within organizational structures by exploiting the Op-
erettA design tool to produce the related diagrams. On the other side, we provided a
well defined formal model based on the CTL temporal logic to characterize the adap-
tation process also from a dynamic dimension. Moreover, the paper shows that these
two forms of requirements specification complement one another. Worth noticing, the
formal specification gives the possibility to model different degrees of uncertainty re-
garding the way an agent has for achieving an objective (state of affair); hence, this

www.manaraa.com

30 H. Aldewereld et al.

specification better reflects the behavior of (human) organizational roles that an agent
from time to time may enact. The ideas of this paper have been illustrated by examples,
within a simplified crisis management scenario suitable to emphasize design issues of
organizations that operate in a real dynamic complex environment.

As future work, we will extend the OperA design methodology to allow designers
to evaluate different organizational structures with respect to context changes. More-
over, the CTL formal specification allows us to envisage forms of analysis of formal
properties (e.g., model checking).

Acknowledgements

This work has been performed in the framework of the FP7 project ALIVE IST-215890,
which is funded by the European Community. The author(s) would like to acknowledge
the contributions of his (their) colleagues from ALIVE Consortium (http://www.ist-
alive.eu).

References

1. Aldewereld, H., Penserini, L., Dignum, F., Dignum, V.: Regulating Organizations: The
ALIVE Approach. In: Workshop on Regulations Modelling and Deployment (ReMoD 2008),
@CAISE 2008, Montpellier, France (2008)

2. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in Logic.
PhD thesis, Universiteit Utrecht (2004)

3. Dignum, V., Dignum, F.: A logic for agent organization. In: Formal Approaches to Multi-
Agent Systems (FAMAS@Agents 2007), Durham (2007)

4. Dignum, V., Dignum, F., Sonenberg, L.: Towards dynamic organization of agent societies.
In: Vouros, G. (ed.) Workshop on Coordination in Emergent Agent Societies, ECAI 2004,
pp. 70–78 (2004)

5. Dignum, V., Tick, C.: Agent-based Analysis of Organizations: Performance and Adapta-
tion. In: IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology (IAT 2007), California,
USA. IEEE CS Press, Los Alamitos (2007)

6. Donaldson, L.: The Contingency Theory of Organizations. Sage, Thousand Oaks (2001)
7. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical

Computer Science, vol. B, pp. 955–1072. MIT Press, Cambridge (1990)
8. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems Jour-

nal 42(1), 5–18 (2003)
9. Gazendam, H., Simons, J.L.: An analysis of the concept of equilibrium in organization the-

ory. In: Proceedings of the Computational and Mathematical Organization Theory Workshop
(1998)

10. Hassas, S., Marzo-Serugendo, G.D., Karageorgos, A., Castelfranchi, C.: Self-organising
mechanisms from social and business/economics approaches. Informatica 30(1), 63–71
(2006)

11. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea Group Inc.,
USA (2005)

12. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

www.manaraa.com

A Formal Specification for Organizational Adaptation 31

13. Morandini, M., Penserini, L., Perini, A.: Operational Semantics of Goal Models in Adaptive
Agents. In: Proceedings of the Eighth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2009). ACM, New York (2009)

14. Okouya, D.M., Dignum, V.: A prototype tool for the design, analysis and development of
multi-agent organizations. In: DEMO Session: Proc. of the 7th Int. Joint Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008). ACM, New York (2008)

15. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High Variability Design for Software
Agents: Extending Tropos. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 2(4) (2007)

16. Pörn, I.: Some basic concepts of action. In: Stenlund, S. (ed.) Logical Theory and Semantical
Analysis. Reidel, Dordrecht (1974)

17. So, Y., Durfee, E.H.: Designing organizations for computational agents. In: Simulating Or-
ganizations: Computational Models of Institutions and Groups, pp. 47–64. MIT Press, Cam-
bridge (1998)

18. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The gaia
methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–370
(2003)

19. Zhang, J., Cheng, B.H.C.: Using Temporal Logic to Specify Adaptive Program Semantics.
Journal of Systems and Software (JSS) 79(10), 1361–1369 (2006)

www.manaraa.com

GORMAS: An Organizational-Oriented
Methodological Guideline for Open MAS

Estefańıa Argente, Vicent Botti, and Vicente Julian

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n. 46022, Valencia, Spain
{eargente,vbotti,vinglada}@dsic.upv.es

Abstract. An Organizational-Oriented Methodological Guideline for
designing Virtual Organizations, focused on Service-Oriented Open
Multi-Agent Systems, is presented in this paper. This guideline covers the
requirement analysis, the structure design and the organization-dynamics
design steps, in which software designers mainly specify the services that
the system under study is requested to offer, the internal structure of
this system and the norms that control its behavior, taking into account
the specific features of open multi-agent systems.

Keywords: virtual organizations, multi-agent systems, methodology.

1 Introduction

In the last years, there have appeared different methods for designing open multi-
agent systems, in which heterogeneous agents with interested or selfish behaviors
might participate inside. These methods take an Organization-Centered Multi-
Agent Systems (OCMAS) [18] approach, so then developers focus on the orga-
nizational aspects of the society of agents, guiding the process of the system
development by means of organizations, norms, roles, etc. Relevant examples
of these methods are Agent-Group-Role (AGR) [18], Tropos [9], MOISE [22],
OMNI [37] (based on the E-Institutions [17] approach), PASSI [10], SODA [30]
and INGENIAS [35].

A key concept in OCMAS methodologies is the Virtual Organization (VO),
which represents a set of single entities and institutions that need to coordinate
resources and services across institutional boundaries [12, 3]. Thus, they are
open systems formed by the grouping and collaboration of heterogeneous entities
(that may be designed by different teams) and there is a separation between
form and function that requires defining how a behavior will take place. They
have been successfully employed as a paradigm for developing agent systems [4,
10]. Organizations allow modeling systems at a high level of abstraction. They
include the integration of organizational and individual perspectives and also
the dynamic adaptation of models to organizational and environmental changes
[7] by forming groups with visibility boundaries [10].

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 32–47, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

GORMAS: An Organizational-Oriented Methodological Guideline 33

From an analysis of these OCMAS methodologies [4], several critical needs
have been identified: (i) a clear characterization of the VO focused not only on
describing its structure by means of roles and groups, but also on how this orga-
nization its related with its environment and how external entities are promoted
to enter inside and offer their services or make use of the organization services;
(ii) the employment of several design patterns of different types of organizational
structures, which describe the intrinsic relationships between the system entities
and can be lately reused in different problems; (iii) a normative regulation of the
employment of services that also promotes agents to work in a cooperative way;
and (iv) different guidelines for integrating the current OCMAS methodologies
in a complete MAS development process.

Regarding services, both Multi-Agent Systems and Service-Oriented Com-
puting Techniques1 try to deal with the same kind of environments formed by
loose-coupled, flexible, persistent and distributed tasks [28]. Web services might
be a valid solution when point-to-point integration of static-bound services is
needed, but they are clearly not good enough for working in a changing envi-
ronment, in which new services appear, have to be discovered and composed or
adapted to different ontologies. The nature of agents, as intelligent and flexible
entities with auto-organizational capabilities, facilitates automatic service dis-
covery and composition. By integrating these two technologies it is possible to
model autonomous and heterogeneous computational entities in dynamic and
open environments [27].

Following this integrating approach, the THOMAS proposal [8] provides a
multi-agent framework for the development of VOs with a service-oriented style.
THOMAS [8] is an open agent platform that employs a service-based approach
as the basic building blocks for creating a suitable platform for intelligent agents
grouped in VOs. It feeds on the FIPA architecture but extends its main compo-
nents (i.e. AMS and DF) into an Organization Management System (OMS) and
a Service Facilitator (SF), respectively. The SF [36] is a service manager that
registers services provided by external entities and facilitates service discovery
for potential clients. The OMS [13] is responsible for the management of VOs,
taking control of their underlying structure, the roles played by the agents inside
the organization and the norms that rule the system behavior.

An OCMAS method should be employed to facilitate the identification of
VOs and services of a specific problem to be implemented organization-oriented
platforms like THOMAS. In this paper, a methodological guideline for MAS
designing based on the Organization Theory [14,19] and the Service-Oriented
approach [16] has been defined, named GORMAS, which allows detailing all
services offered and required by a Virtual Organization, its internal structure,
functionality, normative restrictions and its environment.

Next, GORMAS, the organization-centered MAS methodological guideline
defined in this work is presented. In section 3, a brief discussion of the related
work is shown. Finally, conclusions are included in section 4.

1 http://www.oasis-open.org

www.manaraa.com

34 E. Argente, V. Botti, and V. Julian

2 GORMAS

GORMAS (Guidelines for ORganizational Multi-Agent Systems) defines a set
of activities for the analysis and design of Virtual Organizations, including the
design of their organizational structure and their dynamics. With this method,
all services offered and required by the Virtual Organization are clearly defined,
as well as its internal structure and the norms that govern its behavior.

GORMAS is based on a specific method for designing human organizations
[31,32], which consists of diverse phases for analysis and design. These phases
have been appropriately transformed to the MAS field, this way to catch all
the requirements of the design of an organization from the agents’ perspective.
Thus, the methodological guidelines proposed in GORMAS cover the typical re-
quirement analysis, architectural and detailed designs of many relevant OOMAS
methodologies, but it also includes a deeper analysis of the system as an open
organization that provides and offers services to its environment.

The proposed guideline allows being integrated into a development process
of complete software, which may include the phases of analysis, design, imple-
mentation, installation and maintenance of MAS. In this paper, we mainly focus
on the analysis and design processes (Figure 1a), which are split into: mission
and service analysis steps (analysis phase); and organizational and organization-
dynamics design steps (design phase). Implementation is carried out in the
THOMAS framework [8] which mostly covers the organization software com-
ponents that are required, such as organizational unit life-cycle management,
service searching and composition and norm management.

GORMAS adopts a Virtual Organization Model [11], formalized in a set of six
models [5]: (i) organizational, which describes the entities of the system (agents,
organizational units, roles, norms, resources, applications) and how they are re-
lated between them (social relationships); (ii) activity, which details the specific
functionality of the system, on the basis of services, tasks and goals; (iii) in-
teraction, which defines the interactions of the system, activated by the pursuit
of goals and the execution of services; (iv) environment, which describes the
resources and applications of the system, the agent perceptions and actions on
their environment and the invocation of services through their ports; (v) agent,
which describes the concrete agents and their responsibilities; and (vi) norma-
tive, which details the norms of the organization and the normative goals that
agents must follow, including sanctions and rewards.

This Virtual Organization Model employs the Organizational Unit (OU) con-
cept to represent an agent organization. An OU is composed of a group of entities
(agents or OUs) that carry out some specific and differentiated tasks, following a
pattern of cooperation and communication controlled by norms[6,5]. The OU is
seen as a single entity at analysis and design phases, thus it can pursue goals, of-
fer and request services, publish its requirements of services for allowing external
agents to enter inside, and even play a specific role inside other units.

Due to lack of space, a general view of the different activities that integrate
the proposed methodological guideline is only described in this paper. These

www.manaraa.com

GORMAS: An Organizational-Oriented Methodological Guideline 35

[yes]

[yes]

Service Analysis

Organizational Design

Organization Dynamics Design

[yes]

Mission Analysis

[Is the problem well specified?]

[Is the organization of the system
well defined?]

[Are the dynamics of the system
 well specified?]

[no]

[no]

[no]

Service Analysis

Organizational
Design

Organization
Dynamics Design

Mission Analysis

Interaction
Model

Organization
Model

Agent Model

Environment
Model

Activity Model
Normative

Model

Designer

Mission

Stakeholders

Environment
Conditions

Service /Product
Description

Organizational
Dimensions

Organization
Pattern Designs

Technology
Standardization

Mechanisms
Reward System

Policies

a) b)

Fig. 1. a) GORMAS Activity Diagram; b) GORMAS Activity Detail Diagram

activities are defined with SPEM 2.02, which is an OMG standard meta-model
for formally defining software and system development processes. Moreover,
GORMAS activities include several supporting documents and templates for
enabling the identification and description of the elements of the system [1],
such as templates for identifying the system functionality and describing ser-
vice conditions, consumer/producer goals and quality requirements. Figure 1b
details all specific guidances, models and work products that each activity needs
or produces.

2.1 Mission Analysis

This first activity (Figure 2a) implies the analysis of the system requirements,
identifying the use cases, the stakeholders and the global goals of the system.
More concretely, it is defined:

– The global goals of the system (mission).
– The services and products that the system provides to other entities.
– The stakeholders with whom the system contacts (clients or suppliers of

resources/services), describing their needs and requirements.
– The conditions of the environment or context in which the organization exists

(i.e. complexity, diversity, etc.).

As a result, a diagram of the organizational model is drawn, detailing the prod-
ucts and services offered by the system, the global goals (mission) pursued, the
stakeholders and the existing links between them, the system results as well as
the resources or services needed.
2 http://www.omg.org/spc/SPEM/2.0/PDF

www.manaraa.com

36 E. Argente, V. Botti, and V. Julian

start

Identify
Stakeholders

Identify Organization
Results

Identify Environment
Conditions

[Are all elements well related?]

[no]

Justify the MAS system

[yes]

[Is the MAS necessity well defined?]

[no]

[yes]

Define the System Mission

start

Core Technology
Analysis

Work Flow and Technological
Interdependence Analysis

Work Unit
Technology Analysis

[Are all system services and tasks well specified?]

[no]

Analysis of the goals of
the organization

[yes]

[Are the mission goals well related
to the elements of the system?]

[no]

[yes]

Define Organization Functionality

a) b)

Fig. 2. Activity Diagrams of: a)Mission Analysis step; b) Service Analysis step

2.2 Service Analysis

In this activity (Figure 2b), the services offered by the organization to its clients
are specified, as well as how these services behave (inputs/outputs description
and internal tasks) and which are the relationships (interdependencies) between
these services. Furthermore, goals associated with services are detailed. More
specifically, it is specified:

– The type of products and services that the system offers to or consumes from
its stakeholders.

– The tasks related to the production of the products and services, defining the
steps necessary for obtaining them, their relationships and interdependences
between the different services and tasks.

– The goals related with the achievement of these products and services.
– The resources and applications needed for offering the system functionality.
– The roles related with the stakeholders, on the basis of the type of services

or tasks that they provide or consume.

Taking the Organization Theory [14,19] as a basis, the three existing types of
technology are considered [26]: (i) the Core Technology, which refers to the
whole organization; (ii) the Work Unit or Departmental Technology, which con-
templates the diversity and complexity of the different organizational tasks,
identifying the existing workflows; and (iii) Work Flow and Technological In-
terdependence, that defines the interdependent relations originated as a result of
the workflow between the units of the organization.

Thus, in the Core Technology Analysis activity, the type of products and ser-
vices that the system offers to or consumes from its stakeholdres are determined,

www.manaraa.com

GORMAS: An Organizational-Oriented Methodological Guideline 37

as well as in which measure does any client have influence in the process of pro-
duction and the final aspect of the product; on in which measure services are
related between them and with regard to clients. In the Work Unit Technology
Analysis activity, an instance of the activity model for each service is generated,
detailing its profile (service inputs, outputs, preconditions and postconditions).
In addition, a first decomposition of services in sequence of steps or tasks is
carried out. Finally, in the Work Flow and Technological Interdependes activity,
the existing relations between the units of the organization are specified in order
to reach the organizational goals. In this way, the flows of tasks that turn out
to be totally independent between them are firstly analyzed. Thus, these tasks
that are not directly related between them and, therefore, they will be able to
be executed simultaneously are specified. Next, the sequence of steps needed
between the dependent tasks is also identified.

It should be pointed out that typical business workflows which represent or-
ganization dynamics are modeled in GORMAS by means of services. Thus, a
service can be defined as a composition of tasks, similarly to a workflow in
INGENIAS[25], where a workflow is considered as a chain of tasks, connected
with WFConnects relationships.

In the Analysis of the goals of the organization activity, the mission is de-
composed into functional goals, which are related to the system entities and
identified services. The functional goals [26,38] or soft-goals [23] represent the
specific actions of the units of the organization and their expected results. Nor-
mally they are based on some of the following types of goals: satisfaction of the
client and/or of other groups of interest; continuous improvement of the pro-
cesses, products and services of the organization; cooperation between all the
members, active participation, commitment with their tasks, etc.

As a result of this phase, the diagrams of the organizational and the activ-
ity models are generated. More concretely, in the organizational model, both
resources and applications of the system are identified, and also the entities rep-
resenting the clients or providers of the system that are required to participate
inside. Moreover, the services required and offered by the system are identified,
as well as the roles that provide or make use of these services. For each service,
a diagram of the activity model is generated, detailing its profile and its tasks.
Finally, in the activity model, the mission is split into functional goals, which are
related to the system entities and their services.

2.3 Organizational Design

In this development step (Figure 3a), the structure most adapted for the Vir-
tual Organization is selected. This structure will determine the relationships
and pre-established restrictions that exist between the elements of the system,
based on specific dimensions of the organization [29,38], which impose certain
requirements on the types of work, on the structure of the system and on the
interdependences between tasks. These organizational dimensions are:

www.manaraa.com

38 E. Argente, V. Botti, and V. Julian

– Departmentalization, which details the motivation of work group formation,
i.e. functional (on the basis of knowledge, skills or processes) or divisional (on
the basis of the characteristics of the market, clients, products or services).

– Specialization, which indicates the degree of task dividing, based on the
quantity and diversity of tasks(horizontal job specialization) and the control
exercised on them (vertical job specialization).

– Decision making, that determines the degree of centralization of the organi-
zation, i.e. the degree of concentration of authority and capture of decisions.

– Formalization, which specifies the degree in which the tasks and positions
are standardized, by means of norms and rules of behavior.

– Coordination Mechanism, which indicates how individuals can coordinate
their tasks, minimizing their interactions and maximizing their efficiency,
using mutual adjustment, direct supervision or standardization.

These organizational dimensions are employed for determining the most suitable
structure for the system specifications. Thus, it is carried out:

– The analysis of the organizational dimensions, which allows specifying the
functionality granularity of the service [24], by means of grouping tasks and
services together (defining more complex services) and assigning them to
specific roles; and identifying general restrictions on the coordination and
cooperation behavior of the members of the organization.

– The selection of the structure of organization most interesting for the system.
– The adaption of the selected structure to the problem under study, using

specific design patterns.

For the structure selection, a decision-tree has been elaborated (Figure 3b), that
enables the system designer to identify which is the structure that better adjusts
to the conditions imposed by the organizational dimensions. This decision-tree
can be applied to the system as a whole or to each of its OUs, so then enabling
structure combinations.

A set of design patterns of different structures has been defined which include
simple hierarchy, team, flat structure, bureaucracy, matrix, federation, coalition
and congregation structures [4]. These patterns describe their intrinsic structural
roles, their social relationships, as well as their typical functionality. According
to these design patterns, the diagrams of the organizational and activity models
are updated, integrating these intrinsic roles, relationships and functionality.

2.4 Organization Dynamics Design

In this activity (Figure 4a), the detailed design of the system is carried out,
which implies the following activities: the design of the information-decision
processes; the design of the system dynamics as an open system; the design
of the measuring, evaluation and control methods; the definition of a suitable
reward system; and finally, the design of the system agents, describing them by
means of diagrams of the agent model. These activities are detailed as follows.

www.manaraa.com

GORMAS: An Organizational-Oriented Methodological Guideline 39

Identify Organizational
Dimensions

Assign Tasks Identify Restrictions

[Is the system topology well determined?]

Adapt the pattern
design

[yes]

[no]

Determine Organizational
Structure

1

1) Departmentalization
Dimension

2

2

Functional

Divisional

Matrix
(Functional &

Divisional)

3

3

High horizontal & High vertical
job specialization

High horizontal & Low vertical
job specialization

Low horizontal & high vertical
job specialization

Standardization of skills

Direct supervision

2) Specialization and Decision
making Dimensions

3) Coordination and
Formalization Dimensions

Standardization of outputs

Mutual adjustment

Standardization of work
processes

Low horizontal & low vertical
job specialization Mutual adjustment

High horizontal & High vertical
job specialization

High horizontal & Low vertical
job specialization

Low horizontal & low vertical
job specialization

High horizontal and Low vertical
job specialization

Standardization of work
processes

Standardization of skills

Standardization of outputs

Standardization of work
processes

Functional
Bureaucracy

Team

Federation

Simple
Hierarchy

Coalition

Team

Divisional
Bureaucracy

Coalition

Congregation

Matrix
Structure

a) b)

Fig. 3. a) Activity Diagram of the Organizational Design step; b) Organizational Struc-
ture decision-tree

Design of Information-Decision Processes. The flows of information and
adoption of decisions are described in order to determine how the information is
processed and how agents work for obtaining the expected results (Figure 4b).
More concretely:

– The concrete functionality of services is specified, which implies:
• Detailing services and related workflows for providing these services and

splitting these workflows in concrete tasks.
• Identifying the operative goals, that represent the specific and measur-

able results that the members of an OU are expected to achieve. Thus,
functional goals are split into operative goals, which are lately assigned
to tasks.

– The flow of information of the system is specified, which implies:
• Checking the procedures for obtaining information of the environment,

i.e. verifying whether there exists a contact point with the system for
any stakeholder, using resources, applications or representative agents.

• Defining permissions for accessing resources or applications.
• Defining the specific interactions between agents on the basis of services

and their collaboration diagrams, in which agent messages are defined.
• Defining the ontology of the domain, whose concepts will be used in the

interactions, taking into account the service inputs and outputs.

As a result, the diagrams of the interaction model are defined. Moreover, both
environment, organization and activity model diagrams are updated.

Design of Open System Dynamics. In this activity (Figure 5a), the func-
tionality offered by the Virtual Organization as an open system is established,
which includes so much the services that must be advertised as the policies of

www.manaraa.com

40 E. Argente, V. Botti, and V. Julian

Design of Information-
Decision processes

Design of Open System
Dynamics

Design of Control
Policies

[Are the models well specified?]

[no]

Design of the Reward
System

[yes]

Agent Design

Identify Service
Providers

Detail
Services

Identify
Operative Goals

[Are all services well specified]

[yes]

start

[no]

Detail
Environment

Define Domain
Ontology

Identify
interactions

Define Service
Interactions

[Are all flows of information well specified?]

Update Organization Model
& Activity Model

Generate Interaction
Model Diagrams

[yes]

Update Environment, Activity
and Organization Models

[no]

a) b)

Fig. 4. Activity Diagrams of: a)Organization Dynamics Design step; b)Information-
Decision Design step

role enactment. In this sense, it is specified which is the functionality that must
be implemented by the internal agents of the system and which must be ad-
vertised in order to enable this functionality to be provided by external agents.
Therefore, it is determined:

– The services that have to be advertised.
– The policies for role enactment, detailing the specific tasks for the Acquire-

Role and LeaveRole services of each OU.
– The identification of the internal and external agents.

All roles that need a control of their behaviors require a registration process
inside the OU in which they take part, so they are associated with external
agents, who must request the AcquireRole service to play this role. On the con-
trary, roles like managers or supervisors are assigned to internal agents, since
their functionality needs of sufficient guarantees of safety and efficiency.

Design of Control Policies. In this activity (Figure 5b), the set of norms and
restrictions needed for applying the normalization dimension is defined. Three
different types of standardization are considered [29]: standardization of work
processes, outputs, and skills.

The standardization of work processes implies specifying rules for control-
ling: (i) invocation and execution order of services; (ii) precedence relationships

www.manaraa.com

GORMAS: An Organizational-Oriented Methodological Guideline 41

Identify External
Agents

Determine Functionality to
be published

Define Role Enactment
Policies

Define Standardization
of Work Processes

Define Standardization
of Outputs

Define Standardization
of Skills

Generate Normative
Model Diagrams

[Are all behavioral restrictions well identified?]

[yes]

[no]

Apply Reward
System

Analyze behavior
interests

Select Reward
System

a) b) c)

Fig. 5. Activity Diagrams of: a)Open System Dynamics step; b)Design of Control
Policies step; c)Design of the Reward System step

between tasks; (iii) deadline and activation conditions of services; (iv) and service
access to resources or applications.

The standardization of outputs implies specifying norms for controlling the
service products, based on minimum quality requirements, perceived quality and
previous established goals of productivity and performance.

Finally, the standardization of skills is integrated in the role concept, which
indicates the knowledge and skills required for an agent when playing this role.

As a result, the diagrams of the normative model are generated, so the norms
needed for controlling the behaviors of the members of the system are detailed.
These norms can also be defined with a specific normative language [3] that
imposes a deontic control over agents for requesting, providing or publishing
services. In addition, a normative implementation of this normative language
has been developed [12], so as to enable agents to take into consideration the
existence of norms. For instance, in the THOMAS platform, the OMS component
makes use of this normative implementation in order to control how services can
be employed [13], i.e., when and how agents can request, provide or publish their
services and the specific ones provided by the THOMAS platform.

Design of the Reward System. This activity defines the reward system
needed for allowing the members of the Virtual Organization to work towards
the strategy of the organization (Figure 5c). Therefore, designer proceeds to:

– Analyze the types of behavior needed to promote [20]:
• the willingness to join and remain inside the system.
• the performance dependent on role, so that the minimal levels of quality

and quantity of work to execute are achieved.
• the effort on the minimal levels, defining several measures of perfor-

mance, efficiency and productivity.
• the cooperative behaviors with the rest of members of the organization.

www.manaraa.com

42 E. Argente, V. Botti, and V. Julian

– Select the type of reward system to be used [20]:
• individual rewards, which establish several measures of behavior of unit

member, allowing to promote their efforts on the minimal levels.
• group rewards (competitive or cooperative) [38], that establish several

group measures, rewarding its members based on their specific perfor-
mance inside the group.

• system rewards, which distribute certain gratifications (ex. permissions,
resource accesses) to all members of the system, just by belonging to this
group, trying to promote the participation inside the organization.

– Apply the selected reward system in the specific problem domain.

The methodological guideline enables the selection of the type of incentive system
that should be employed, but it does not detail the concrete mechanisms for
implementing this system. As a result, the diagrams of the normative model are
updated, defining new norms or adding sanctions and rewards to the existing
norms, according to the selected reward system.

As summary, the methodological guide proposed for designing Virtual Or-
ganizations, based on a specific guideline for designing human organizations,
provides an iterative method that consists of: (i) the analysis and design of the
global goals of the organization; (ii) the analysis of its tasks and processes; (iii)
the specification of the organizational dimensions; (iv) the selection of the most
adapted structure for the system; (v) the identification of the processes of infor-
mation and decision; (vi) the analysis of the public functionality that has to be
advertised; (vii) the control of the agent behaviors and (viii) the specification of
sanctions and rewards, for promoting interesting organization behaviors.

3 Related Work

Organization-centered MAS methodologies try to describe, in general, which
are the main goals of the organization, its organizational structure (topology,
hierarchy of roles and interactions), its dynamics (how agents enter/leave the
organization, how they adopt roles, which is the agents’ life-cycle and which are
the social norms) and the environment of the organization. For instance, Gaia
[39] considers that a specific topology for the system will force the use of several
roles that depend on the selected topological pattern. Thus, it suggests employing
organizational patterns in the analysis and design of the system. Tropos [9]
proposes to use generic multi-agent structures based on human organizations,
such as structure-in-five, pyramid, joint venture, etc. During the design phase,
several social agent patterns are assigned to organizational topologies, such as
brokers, matchmakers, mediators. However, social rules are not considered in
Tropos and there is not any model that enables determining global rules to be
applied in the organization as a whole or in multiple organizational roles.

More generally, although OCMAS methodologies are organization-centered,
they normally focus on a rather reduced number of topological structures and do
not take into account the human organizational designs. For example, AGR [18]
only considers groups (set of agents that share common features) as a topological

www.manaraa.com

GORMAS: An Organizational-Oriented Methodological Guideline 43

structure and it assumes that groups are dynamically created during the execu-
tion of the system. In E-Institutions [17], system structure is organized by means
of interaction scenes and transitions, where a scene is a communicative process
between agents. These scenes are defined after analyzing role relationships, but
without taking into account any human organizational topology. Therefore, it
would be interesting to consider different types of organizational structures, so
scene identification and development process would be easier. In SODA [33],
tasks are related to roles (if they need limited resources and competencies) or
to groups (if they need several competencies and access to different resources).
Later, in the design phase a social model is considered, in which groups are as-
signed to agent societies, designed over specific coordination media that provide
abstractions expressive enough to model the society interaction rules. These co-
ordination models (such as first come/first served or task decomposition) also
appear inside human societies. Therefore, although this methodology does not
specifically take into account human organizational designs, it considers sev-
eral human coordination mechanisms. INGENIAS [35] (based on MESSAGE[7])
specifies an organizational model in which groups, members, work flows and or-
ganizational goals are detailed. Thus, several work flows for each use case are
defined, and also actors (agents and roles) participating in those work flows.
Then these actors are grouped together according to their functionality or avail-
able resources that they need. Therefore, groups are identified but leaving out
of account any other kind of organizational design. Finally, OperA [15] repre-
sents an important approach for modeling open multi-agent systems, since it
describes the desired behavior of the society and its general structure by means
of an organizational model, as well as details organizational dynamics using a so-
cial model and an interaction model, that describes the actual behavior of society
during its execution. However, if the system is composed of several topological
models or substructures, OperA does not offer any guideline to distinguish and
combine these substructures between them. Moreover, OperA only takes into
account three coordination models (market, hierarchy and network), but other
topological systems, such as matrix organizations or chain of values, should also
be taken into account.

The guideline proposed in this paper integrates both the human organization
design, based on the Organization Theory, and some of the most relevant OC-
MAS methodologies, such as Tropos [9], Gaia [39], MOISE [22], INGENIAS [34]
and the E-Institution [17] framework, as well as the Virtual Organization Model
[11]. In this way, GORMAS extends the analysis requirement of Tropos with a
deeper description of the mission of the system. It also includes a goal catego-
rization into mission, functional and operative goals, similar to soft and hard
goals of Tropos, but more related to the human organization design; and the
selection of the organization structure, in this case based on the Organization
Theory, which specifies a set of organizational dimensions that impose certain
requirements on the types of work, on the structure of the system and on the
task interdependences. Moreover, a set of design patterns of different structures
has been defined, similarly as in Tropos or Gaia, but based on the Organization

www.manaraa.com

44 E. Argente, V. Botti, and V. Julian

Theory. These design patterns include hierarchy, team, bureaucracy, matrix,
federation, coalition and congregation structures [4]. Furthermore, all services
provided by internal entities of the system are identified, as well as all services
offered by external agents which require a strict control of their final behavior. In
this way, the normative features of MOISE, Gaia and E-Institutions have been
integrated into GORMAS and extended with a reward system.

Additionally, GORMAS can be independently used for the analysis and de-
sign of the multiagent system, or it can be integrated in other development
methods, such as INGENIAS or SODA, in order to provide them with an or-
ganizational perspective and an open system behavior. For example, GORMAS
improves SODA with a justification of the MAS, an analysis of the environmen-
tal conditions, an analysis of the functionality of the system based on services, as
well as a mechanism to facilitate the selection of a suitable topology for the sys-
tem, based on the organizational dimensions defined in the Organization Theory.
In addition, both SODA architecture and detailed designs could be reinforced
with GORMAS activities, thereby making easier the description of the agent
interactions, the identification of groups of agents and the description of the sys-
tem rules (including sanctions and rewards). Furthermore, SODA agent societies
present similarities to our Organizational Units since they both can be seen as
a group of agents, but OUs also represent both resources and norms integrated
in the agent society, thus being a more powerful abstraction.

4 Conclusions

This work describes GORMAS, an Organizational-Oriented methodological
guideline for designing Virtual Organizations. Its main advantages are: (i) an
integration of the Organization Theory for detailing the Virtual Organization
Model and defining the normative and reward systems; (ii) a selection process
for a suitable structure of the system organization that makes use of several
design patterns of typical organizational structures; (iii) an iterative method for
generating all diagrams of the Virtual Organization Model; (iv) a specification of
different activities that can be integrated in a complete MAS development pro-
cess; and (v) a description of the system functionality from a Service-Oriented
perspective, defining not only the services offered by the organization, but also
the services required inside the system that are not yet provided by the organi-
zation but have to be supplied by external agents in a regulated and controlled
way. This is the most relevant advantage, since the dynamic evolution of the
open MAS is considered both in analysis and design phases.

GORMAS has been applied into different application examples, such as a
personalized information system [2], a water market system [21] and a tourism
market system [1]; all of them considered as VOs in which external entities
can participate inside and their behavior is controlled by norms. Moreover, a
graphical development tool3, named EMFGormas [21], has been defined. This
tool is based on an unified meta-model for engineering large-scale open systems.
3 http://www.dsic.upv.es/users/ia/sma/tools/EMFgormas/index.html

www.manaraa.com

GORMAS: An Organizational-Oriented Methodological Guideline 45

EMFGormas helps designers with the diagram model construction of the VO
following GORMAS activities, verifies its consistency and generates final code to
the THOMAS framework, which provides a service-oriented execution framework
for supporting the development of open MAS.

Acknowledgments. This work has been partially funded by TIN2005-03395
and TIN2006-14630-C03- 01 projects of the Spanish government, FEDER funds
and CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

References

1. Argente, E.: GORMAS: Guias para el desarrollo de Sistemas multi-agente abiertos
basados en organizaciones. PhD thesis, Universidad Politecnica de Valencia (2008)

2. Argente, E., Botti, V., Julian, V.: Organizational-oriented methodological guide-
lines for designing virtual organizations. In: Omatu, S., Rocha, M.P., Bravo, J.,
Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009.
LNCS, vol. 5518, pp. 154–162. Springer, Heidelberg (2009)

3. Argente, E., Criado, N., Botti, V., Julian, V.: Norms for agent service controlling.
In: Proc. EUMAS, pp. 1–15 (2008)

4. Argente, E., Julian, V., Botti, V.: Multi-Agent System Development based on
Organizations. Electron Notes Theor. Comput. Sci (ENTCS) 150(3), 55–71 (2006)

5. Argente, E., Julian, V., Botti, V.: MAS Modeling Based on Organizations. In: Luck,
M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386, pp. 1–12. Springer,
Heidelberg (2009)

6. Argente, E., Palanca, J., Aranda, G., Julian, V., Botti, V.: Supporting Agent Or-
ganizations. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.)
CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 236–245. Springer, Heidelberg (2007)

7. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P.,
Kearney, P., Stark, J., Evans, R., Massonet, P.: Agent-oriented analysis using MES-
SAGE/UML. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001.
LNCS, vol. 2222, pp. 119–125. Springer, Heidelberg (2002)

8. Carrascosa, C., Giret, A., Julian, V., Rebollo, M., Argente, E., Botti, V.: Service
Oriented MAS: An open Architecture. In: Proc. Autonomous Agents and Multia-
gent Systems (AAMAS), pp. 1291–1292 (2009)

9. Castro, J., Kolp, M., Mylopoulos, J.: A requirements-driven software development
methodology. In: Conf. Advanced Information Systems Engineering (2001)

10. Cossentino, M.: From requirements to code with the passi methodology. In: Agent
Oriented Methodologies IV, pp. 79–106 (2005)

11. Criado, N., Argente, E., Julian, V., Botti, V.: Designing Virtual Organizations. In:
Proc. PAAMS 2009, vol. 55, pp. 440–449 (2009)

12. Criado, N., Julian, V., Argente, E.: Towards the implementation of a normative
reasoning process. In: Proc. PAAMS, vol. 55, pp. 319–328 (2009)

13. Criado, N., Julian, V., Botti, V., Argente, E.: A Norm-based Organization Manage-
ment System. In: AAMAS Workshop on Coordination, Organization, Institutions
and Norms in Agent Systems (COIN), pp. 1–16 (2009)

14. Daft, R.: Organization Theory and Design. South-Western College Pub. (2003)
15. Dignum, V.: A model for organizational interaction: based on agents, founded in

logic. PhD thesis, Utrecht University (2003)

www.manaraa.com

46 E. Argente, V. Botti, and V. Julian

16. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2005)

17. Esteva, M., Rodriguez, J., Sierra, C., Garcia, P., Arcos, J.: On the formal Specifi-
cation of Electronic Institutions. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink
2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

18. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

19. Fox, M.: An organizational view of distributed systems. IEEE Trans. on System,
Man and Cybernetics 11, 70–80 (1981)

20. Galbraith, J.: Organization Design. Addison-Wesley, Reading (1977)
21. Garcia, E., Argente, E., Giret, A.: Service-oriented Open Multiagent Systems mod-

eling tool. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009.
LNCS, vol. 5925, Springer, Heidelberg (2009)

22. Gateau, B., Boissier, O., Khadraoui, D., Dubois, E.: MoiseInst: An Organizational
model for specifying rights and duties of autonomous agents. In: Proc. EUMAS
2005, pp. 484–485 (2005)

23. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development
Methodology: Processes, Models and Diagrams. In: Giunchiglia, F., Odell, J.J.,
Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 162–173. Springer, Heidelberg
(2003)

24. Haesen, R., Snoeck, M., Lemahieu, W., Poelmans, S.: On the Definition of Service
Granularity and its Architectural Impact. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 375–389. Springer, Heidelberg (2008)

25. Hidalgo, A.G., Gomez-Sanz, J.J., Pavón, J.: Workflow Modelling with INGENIAS
methodology. In: Proc. 5th IEEE Int. Conf. on Industrial Informatics, vol. 2, pp.
1103–1108 (2007)

26. Hodge, B.J., Anthony, W., Gales, L.: Organization Theory: A Strategic Approach.
Prentice-Hall, Englewood Cliffs (2002)

27. Huhns, M., Singh, M.: Reseach directions for service-oriented multiagent systems.
IEEE Internet Computing, Service-Oriented Computing Track 9(1) (2005)

28. Huhns, M., Singh, M.: Service-oriented computing: Key concepts and principles.
IEEE Internet Computing, Service-Oriented Computing Track 9(1) (2005)

29. Mintzberg, H.: Structures in fives: designing effective organizations. Prentice-Hall,
Englewood Cliffs (1992)

30. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963,
pp. 49–62. Springer, Heidelberg (2006)

31. Moreno-Luzon, M.D., Peris, F., Gonzalez, T.: Gestión de la Calidad y Diseño de
Organizaciones. Prentice Hall, Pearson Education (2001)

32. Moreno-Luzon, M.D., Peris, F., Santonja, J.: Quality management in the small and
medium sized companies and strategic management. In: The Handbook of Total
Quality Management, pp. 128–153 (1998)

33. Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design of
Agent-Based Systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 185–193. Springer, Heidelberg (2001)

34. Pavón, J., Gómez-Sanz, J.J.: Agent Oriented Software Engineering with INGE-
NIAS. In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS
(LNAI), vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

35. Pavon, J., Gomez-Sanz, J., Fuentes, R.: The INGENIAS Methodology and Tools,
article IX, pp. 236–276. Idea Group Publishing, USA (2005)

www.manaraa.com

GORMAS: An Organizational-Oriented Methodological Guideline 47

36. Val, E.D., Criado, N., Rebollo, M., Argente, E., Julian, V.: Service-oriented frame-
work for Virtual Organizations. In: Proc. International Conference on Artificial
Intelligence (ICAI), vol. 1, pp. 108–114. CSREA Press (2009)

37. Vazquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems.
Technical Report UU-CS-2004-015, Utrecht University (2004)

38. Wagner, J., Hollenbeck, J.: Organizational Behavior. Thomson (2001)
39. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing Multiagent Systems:

The Gaia Methodology. ACM Transactions on Software Engineering and Method-
ology 12, 317–370 (2003)

www.manaraa.com

Part II

Development Techniques

www.manaraa.com

Model Transformations for Improving
Multi-agent System Development in INGENIAS

Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and Rubén Fuentes-Fernández

Dept. Software Engineering and Artificial Intelligence
Facultad de Informática

Universidad Complutense de Madrid, Spain
ivan gmg@fdi.ucm.es, jjgomez@sip.ucm.es, ruben@fdi.ucm.es

Abstract. Agent-Oriented Software Engineering is currently deeply in-
fluenced by the techniques and concepts of Model-Driven Development.
In this context, the use of automated transformations to support software
processes is not explored enough. Models are supposed to be created fol-
lowing the activities of a process, which standard transformations could
partially perform. The reduced use of transformations for this purpose is
largely due to the high effort required for their development. To overcome
this limitation, this paper presents an algorithm to generate model trans-
formations by-example. It overcomes two common limitations of these
approaches: the generation of many-to-many transformation between ar-
bitrary graphs of elements; dealing with transformation languages that
do not directly support graphs of elements in their source or target mod-
els. The algorithm has been implemented for the ATLAS transformation
language in the MTGenerator tool. The paper also illustrates how to use
this tool to facilitate the support for a software process, in this case for
the INGENIAS methodology.

Keywords: Model-Driven Development, Model Transformation, Model
Transformation By-Example, Multi-agent System, INGENIAS.

1 Introduction

Model-driven Development (MDD) [11] has a relevant influence on Agent-oriented
Software Engineering (AOSE). Meta-modeling techniques have already helped
formalizing Multi-Agent System (MAS) specifications, and automated transfor-
mations have been proposed for their development. Nevertheless, AOSE can
still take further advantage of MDD practices. One of these potential lines of
research is the use of Model Transformations (MTs) as an integrating part of
AOSE software processes.

The application of MTs requires to use meta-models (a model is the in-
stance of a meta-model) specified with a meta-modeling language supported
by some of the existing Model Transformation Languages (MTLs) [10]. Most
AOSE methodologies are not ready for this setting. For instance, between the
ten methodologies listed in [8] only three have meta-model based tools and con-
sider some kind of transformations: PASSI, which uses UML profiles for defining

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 51–65, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

52 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

its meta-model; INGENIAS and ADELFE, which are based on the ECore lan-
guage [5]. The other methodologies do not strictly follow a MDD approach and
use meta-models, for instance, for documentation and notation. The adoption
of MDD in these methodologies should go beyond declaring the corresponding
meta-models and include the modification of the existing development processes,
use of meta-models by means of modeling tools and generation of artifacts with
MTs. Despite the required conversion effort, there are important benefits on
incorporating transformations to a process. Some of them are:

– Knowledge capture. A transformation is created according to the understand-
ing of the original and transformed models. Hence, the constraints referenced
by the transformation are strongly related to the intended semantics associ-
ated to the model and the development process. For instance, a transforma-
tion can be used for transitions between the different stages of the develop-
ment. This way, the transformation could become the actual specification of
how this transition can happen.

– Reusability. Transformations used for a development can be reused into an-
other project and across different domains.

– Decoupling. Transformations exist independently of the tools, and act on
the produced models. Hence, they can provide additional functionalities to
support a methodology without changing its tools.

Following this line of research, there are already some initial results in the ap-
plication of MTs to support software processes, for instance in the Tropos [4]
and ADELFE [14] methodologies. However, these works do not include tool sup-
port for facilitating the definition of MTs, which makes for designers difficult to
extend its use.

The experience in AOSE with MTs make clear that producing them is not
trivial. It requires learning the syntax, and determining how to express left and
right-hand sides of the transformation rules in terms of the input and output
meta-models. Moreover, there is little support for their development, for instance
debugging is usually a completely manual task. Looking for a more efficient
way to produce transformations, there is research on Model Transformation By-
Example (MTBE) [15]. This technique allows the automated generation of MTs
using pairs of models that are examples of the expected inputs and outputs of
those MTs. MTBE significantly reduces the cost of producing transformations.
However, existent tools of MTBE [16,17] do not consider the generation of many-
to-many transformation rules. These rules transform a network of concepts into
another, whereas most MTBE approaches just transform one element into many.
From our experience [6], the many-to-many rules are necessary in the application
of MDD principles to AOSE.

This work presents several results that address the previous limitations in the
application of MTs in software processes. First, it describes a MTBE algorithm
able to generate MTs that contain many-to-many rules. It shows its implementa-
tion in the MTGenerator1 tool for the ATLAS Transformation Language (ATL)
1 Available from the Grasia web http://grasia.fdi.ucm.es

(in “Software”→“MTGenerator”).

www.manaraa.com

Model Transformations for Improving Multi-agent System Development 53

Fig. 1. Relevant elements of the INGENIAS notation

[2]. Second, it uses this algorithm and tool to illustrate how MTs can be used as
an integrating part of software processes. The presentation considers the INGE-
NIAS methodology and its processes [12]. Figure 1 shows some relevant elements
of the INGENIAS notation that are used later. The paper applies MTs to gen-
erate the interactions related with use cases and to define agent skills. More
transformations have been applied in our previous work [6]. These MTs consti-
tute examples of knowledge captured within INGENIAS. With them, the way to
make models evolve is made explicit. Any designer can take advantage of these
MTs in any development and save effort in the definition of the specifications.

The rest of the paper is organized as follows. The next section presents the
tool and its underlying MTBE algorithm. Section 3 describes in detail the two
proposed examples of MTs to support the INGENIAS software process. Section
4 includes the related work about transformations and AOSE. Finally, Section
5 discusses some conclusions about the work.

2 MTBE in INGENIAS and the MTGenerator Tool

Most of AOSE designers are not used to MTLs, which makes difficult for them
approaching a complete model-driven project. However, they are used to agent-
oriented modeling tools. In a MTBE approach, these tools can produce example
pairs of source and target models to automatically generate MTs that implement
the transformation between them. Hence, MTBE makes the perfect choice for a
preliminary contact with this kind of development.

This paper exemplifies the application of MTBE with INGENIAS modeling.
As explained in the introduction, our research has found that current MTBE
approaches have certain limitations that should be overcome for AOSE. Table 1

Table 1. Comparison with other MTBE approaches

Features of MTBE Varro and
Balogh [16]

Wimmer et
al [17]

Our algorithm
and tool

Mapping of attributes yes yes yes
Propagation of links yes yes yes
Negative examples yes no no
Generation of constraints no yes yes
Explicit allocation of target elements yes no yes
Context analysis yes no yes
Limit number of input elements in rules 1 1 no-limit
Limit number of output elements in rules 1 1 no-limit

www.manaraa.com

54 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

Fig. 2. MTGenerator, the model-transformation generator tool

compares the most relevant features of MTBE in our algorithm and other existing
techniques and tools.

The prototype tool that implements this algorithm is called the MTGenerator.
It generates ATL MTs from INGENIAS models. Its interface can be seen in
Figure 2. The tool provides a Graphical User interface (GUI) where the user can
select the elements required to generate the MT. First, the user must indicate
the input and output meta-models of the MT by selecting their corresponding
location paths in the top-left area of the GUI. These meta-models must be
defined with the ECore language [5] used by ATL [2]. Then, the user can add
the location paths of the prototype pairs of models in the top-right area of the
tool. After the automatic generation, the tool shows some logs in the Logs text
area, confirming that the generation has finished successfully. The bottom text
area shows the generated ATL MT for examination.

Even if the user wants to improve manually the generated transformation, the
tool saves time because it already provides an initial transformation as a basis
for the final one. The next sub-section briefly describes the underlying algorithm
of the MTGenerator tool.

2.1 The MTBE Algorithm

The presented algorithm produces MTs that contain rules transforming a group
of elements into another group of elements. It can be implemented in most of
available MTLs, as it uses common language constructions, i.e. rules from ele-
ments to graphs and constraints. Though some languages support multiple input
patterns, these languages are barely used in the community. The presentation of

www.manaraa.com

Model Transformations for Improving Multi-agent System Development 55

the algorithm uses the notation of the work in [7], which also further describes
some aspects of the algorithm.

A general MT in our algorithm has the following form:

module...
rule < name > {
from < input element > (< constraints >)
to < output elements >
do {actions} }
< other rules >

The MTBE algorithm to generate such MTs corresponds to the function:

function mtbe(mmi, mmo : meta-model; pairs: PMmmi
×Mmmo):MT

The algorithm takes as input two meta-models, mmi and mmo, and pairs of in-
stances of those meta-models. These pairs belong to PMmmi

×Mmmo , which stands
for the set of sets whose elements are pairs of models instantiating the input
meta-models (i.e. {< mi, mo > |mi is instance of mmi, mo is instance of mmo}).
The elements of a model m are denoted as m.E. The set of root elements of a
model m, which are the enter points to the different graphs of elements in m,
are denoted as m.O and its elements as m.O.e . The information transfer from
the input models to the output models is achieved by means of a dictionary. A
dictionary is a set of tuples < ex, cx >, where ex ∈ E is an element and cx a
constraint expression of the MTL. The output of the algorithm is a MT, whose
words are concatenated with the ⊕ operator.

1: begin
2: dictionary = ∅

3: vars = GenerateVariables(mmo)
4: rules = ∅

5: for each < mi, mo >∈ pairs do
6: main = SelectMainElement(mi.E)
7: UpdateDictionary(dictionary, main, BasicRootConstraint)
8: inCons = GenerateInputConstraints(main)
9: . . . /* Continues later */ . . . ;

The algorithm starts with an empty dictionary, a list of variables, and a pre-
liminary root element of the model. If there are several possible roots, then
anyone is chosen. This root element is traversed with the GenerateInputCon-
straints method until reaching all connected elements by means of reference,
aggregation or attribute relationships. This information is added as constraints
to inCons which represents the input constraints of the current rule.

4: . . .
5: for each < mi, mo >∈ pairs do

. . . /* Continuing main loop */ . . . ;

www.manaraa.com

56 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

9: for each potentialMain ∈ mi.E such that potentialMain is a root
10: potentialMainConstraint = CreateConstraint(potentialMain)
11: UpdateDictionary(dictionary, potentialMain, potentialMainConstraint)
12: inCons = inCons and GenerateInputConstraints(potentialMain)
13: end for
14: . . . /* Continues later */ . . . ;

After a reference point is chosen, which is denoted as the main element, the al-
gorithm studies other possible roots and includes them as constraints in the rule.
These new elements are added to the dictionary and to the input constraints.
So far, all input elements have been taken into account in inCons, and it is the
turn of considering output elements.

4: . . .
5: for each < mi, mo >∈ pairs do

. . . /* Continuing main loop */ . . . ;
14: aggregatedToRootElements = ∅

15: outElems = ∅

16: for each e ∈ mo.O.e do
17: outElems = outElems ⊕ GenerateOutputElement(dictionary, e)

aggregatedToRootElements = aggregatedToRootElements ∪ {e}
18: end for
19: actions = GenerateActions (aggregatedToRootElements)
20: rule = rule main(⊕ inCons ⊕) ⊕ to ⊕ outElems ⊕
21: imperative ⊕ actions ⊕ endrule
22: rules = rules ⊕ rule
23:end for

This part of the algorithm visits all elements which are roots in the output model
(i.e., the elements of mo.O.e). For each of these elements, a set of MTL elements is
generated. There is a set because, from the selected root, all connected elements
are visited. This set contains imperative actions intended to fill in values in the
attributes of generated elements. Rules are chained one to the other with ⊕ to
form the final MT.

24: rootRule = GenerateRootRule()
25:rules = rules ⊕ rootRule
26:mt = header ⊕ vars ⊕
27: begin ⊕ rules⊕ end
28:return mt
29:end

The final transformation includes the variables initially extracted and the rules
obtained for each pair of models. It follows the syntax outlined at the beginning
of this section.

www.manaraa.com

Model Transformations for Improving Multi-agent System Development 57

3 Transformations in the INGENIAS Development
Process

This section considers the application of the MTGenerator tool, which imple-
ments the previous MTBE algorithm, to generate MTs that support an AOSE
software process. Specifically, this paper considers the different ways of instanti-
ating the INGENIAS [12] meta-model to generate MAS specifications and their
artifacts. Here, an artifact stands for a diagram or part of it containing a piece
of information relevant for the development.

Fig. 3. INGENIAS development processes. The arrows indicate the order of artifact
generation, though inverse navigation is also possible. The dotted arrows indicate the
influence of a diagram into another.

As a result of the experience in the development of MAS with INGENIAS, this
work has identified a recurrent order in the generation of the different artifacts.
This dependency graph is shown in Figure 3. In spite of the variety of options, the
INGENIAS modeling usually starts with use cases. The use cases can be refined
either with interactions or organizations. However, both possibilities are focused
on specifying the organization structure. After them, those organizations are re-
fined with the tasks and goals of their agents. This refinement implies declaring
the inputs and outputs of the tasks and their relationships with the goals. The
next step is the simultaneous specification of agents and elements in the environ-
ment. The agents are linked with roles, which are responsible of the execution
of some tasks. The environment contains the internal and external applications,

www.manaraa.com

58 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

which produce events that trigger the execution of certain tasks. Finally, spec-
ifications describe some low-level details of the implementation of both tasks
and applications. INGENIAS makes it with components that associate pieces of
programming code to elements in specifications.

Each of the previous steps between two types of information, i.e. diagrams,
can be assisted with several MTs. For the sake of brevity, the next sub-sections
only present three of these MTs. The reader can find the application of more
MTs generated with the MTGenerator tool in our previous work [6].

3.1 Transformations for Realizing Use Case Behaviors

The realization of use cases in INGENIAS can follow several alternatives. One
of them is to expand the definition of the interactions that realize it. For each
interaction, a protocol has to be defined. In the case of this MT, the specification
of the protocol uses a custom notation of INGENIAS which permits combining
message passing primitives with task execution. Using model transformations
and starting from the initial use case, it is possible to define prototypes for the
resulting concepts and the relationships between them and the original concepts.

The first MT, called UseCase2Interaction, creates the definition of an interac-
tion from a use case. Figure 4 shows its model example prototypes. The MT defines
an interaction that communicates the agents and roles related with a particular
use case. Annex A shows the code of the generated ATL transformation.

Fig. 4. Model Examples for the UseCase2Interaction model transformation

www.manaraa.com

Model Transformations for Improving Multi-agent System Development 59

In the code of Annex A, one can observe that Rule 1 expresses the source
prototype with constraints. For instance, the relationship between a use case
and its goal is represented with a constraint that refers to the UseCasePursues
relationship type. Moreover, each element of the target model prototype is gener-
ated as an output element of the rule, like the AUMLSpecification element. Note
that, according to the INGENIAS metamodel, the relationships are represented
with several elements (for the relationship bodies and their ends). For instance,
the UseCasePursues relationship type has as ends UseCasePursuessource and
UseCasePursuestarget. The MTBE algorithm takes these elements into account
even if the editor of the INGENIAS Development Kit (IDK) tool does not graph-
ically present them, because they are necessary to define correctly the MT.

Fig. 5. Model Examples for the InteractionDefinition2InteractionProtocol model trans-
formation

Another MT, called InteractionDefinition2InteractionProtocol, creates a basic
protocol from an interaction definition. The pairs of models appear in Figure 5.
The resulting protocol includes two interaction units, in which there are a request
and a response. This protocol is only a starting point, and designers must use it
to complete the specification.

www.manaraa.com

60 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

3.2 Transformation for Skill Definition

Defining the skills of an agent is a basic activity in most AOSE methodologies.
A skill can be regarded as the capability to fulfill a goal. In INGENIAS, this
implies: defining a task; declaring that the agent plays a role responsible of the
task execution; and associating the goal to the task. The task can use resources or
additional applications. INGENIAS applications are wrappers that allow agents
to access non-agent software. As a result of task execution, new information is
produced and asserted into the agent mental state.

Using again MTBE, this knowledge can be synthesized into a pair of pro-
totypes and incorporated into a MT. Figure 6 presents these examples. They
correspond to a source agent that acquires a new skill. The skill is represented
in the target model as a goal pursued by the agent and whose satisfaction de-
pends on a task. The relationship between agent and task is indirect through a
new agent’s role that is responsible of the task. The generated MT is applied
to all the agents by default. Designers can apply this MT to only one agent if
necessary, by adding a simple additional constraint with the agent identifer (i.e.
cin.id =< AgentID >).

Fig. 6. Model Examples for the AddSkill model transformation

3.3 Evaluation of the Use of Transformations on an AOSE
Methodology

The experience with INGENIAS allows us to extrapolate and highlight the fol-
lowing facts about the application of MTs in AOSE methodologies:

– Traceability problem. Some inconsistences may occur when modifying models
which were generated from MTs. This problem will be studied in the future.
MDD usually recommends in this cases modifying the affected MTs.

www.manaraa.com

Model Transformations for Improving Multi-agent System Development 61

– Reducing costs. MTs can be applied several times in a MAS specification,
producing many concepts and saving effort to designers. However, the re-
duction of costs must still be quantitatively measured.

– Reusability across domains. The presented MTs are reusable, but this does
not always happen. Examples of potential non-reusable MTs would be those
requiring explicit values in input pairs.

4 Related Work

There are already some examples of the application of MTs to support AOSE
software processes. This section discusses some of the most relevant.

The Tropos [4] methodology applies MTs for different tasks. Tropos conceives
development as an incremental process that adds new elements refining existing
actors, goals and plans. This refinement is organized in five major phases or
disciplines: early requirements, late requirements, architectural design, detailed
design and implementation. Bresciani et al. [4] apply MTs to perform standard
refinements of requirements in the early requirements phase. Perini and Susi [13]
use MTs during design, in what they called synthesis. The synthesis transforms a
model into another of a lower level of abstraction, specifically, it creates elements
in the detailed design model from the architectural design model. One of the main
goals of that work is to keep synchronization when applying MTs. Moreover,
since the detailed design model is expressed with UML activity and sequence
diagrams, that work aims at exploiting the UML 2.0 meta-model and to maintain
the traceability between models with it. The mentioned Tropos-to-UML MT
specifies several one-to-many rules: they transform a plan into an action, several
nodes and several control flows. The group of target elements can vary due to
certain constraints. These Tropos MTs are expressed with the DSTC language
proposal for MOF QVT, and these MTs are executed with a MT engine called
Tefkat2.

Moreover, Amor, Fuentes and Vallecillo [1] apply the Model-Driven Architec-
ture (MDA) [11] principles to the Tropos methodology. In particular, their MTs
receive input from the Platform-Independent Models (PIM), expressed with the
Tropos meta-model, and create a Platform Specific Model (PSM), expressed
with the Malaca MAS language.

In the same line of research, the ADELFE [3] methodology uses a MT to re-
fine PIM into more specific models. In particular, its AMAS-ML is the abstract
language whereas the μADL (micro-Architecture Description Language) [14] is a
platform-specific language that expresses operating mechanisms of agents (simi-
lar to non-functional concerns). These mechanisms are related with the concepts
involved in the creation and maintenance of the agent knowledge, such as per-
ceptions and actions. In this manner, the behavior of cooperative agents, defined
in the AMAS-ML model, is separated from the operating concern.

2 Tefkat is part of the Pegamento project of the DSTC in the University of Queensland
http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/index.html

www.manaraa.com

62 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

The work in [9] also proposes a language for MAS with a high-level abstraction
language. Models of this language could be successively transformed into others
more specific until code is generated.

All the aforementioned works use MTs to support software processes, but
they typed these without assistance of any tool. In contrast, our approach, which
pursues the same support goal, uses a tool for assisting MAS designers in creating
MTs and automatically generates them.

5 Conclusions

The integration of transformations to support AOSE methodologies still raises
relevant challenges: high development efforts, low level of abstraction when com-
pared with models, and need of adapting methodologies to the principles of
MDD.

INGENIAS has introduced some advances in this line of research for AOSE.
It is an example of methodology that bases its tools in meta-models, and has
reoriented its process to integrate MTs. However, this has required an important
reconversion effort from previous versions of the methodology. For this migration,
the availability of a tool to generate MTs by example has been key, since it has
increased the productivity of engineers. The MTBE algorithm of the proposed
tool overcomes some common limitations of these approaches, specifically that
they cannot generate transformations between arbitrary graphs of elements. The
resulting tool has facilitated the integration of MTs as a relevant and standard
support of the development process. The example transformations introduced in
this paper, as well as the tools that made possible to achieve these results, are
available from the Grasia web.

Other methodologies have chosen to create from scratch new languages or
getting rid of the old tools. However, this work considers that this implies an
important lost of previous work that should be avoided when possible.

Future research of this work includes two lines. The main drawback of the
algorithm is that it cannot specify negative examples, that is, elements that
should not appear in the source model of the prototype pair. This problem has
been already considered in the literature and solutions will be added in extensions
of the algorithm. About methodologies, there is still lack of experience in the
development of processes that consider as an integrating part of their resources
MTs. More work can lead to the definition of libraries of MTs reusable in AOSE
between different methodologies and processes.

Acknowledgements. This work has been done in the context of the project
“Agent-based Modelling and Simulation of Complex Social Systems (SiCoSSys)”,
supported by Spanish Council for Science and Innovation, with grant TIN2008-
06464-C03-01. Also, we acknowledge support from the ”Programa de Creación
y Consolidación de Grupos de Investigación UCM-BSCH” (GR58-08).

www.manaraa.com

Model Transformations for Improving Multi-agent System Development 63

References

1. Amor, M., Fuentes, L., Vallecillo, A.: Bridging the Gap Between Agent-Oriented
Design and Implementation Using MDA. In: Odell, J.J., Giorgini, P., Müller,
J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 93–108. Springer, Heidelberg (2005)

2. ATL Transformations Repository (provided by the Eclipse Web),
http://www.eclipse.org/m2m/atl/atlTransformations/

(available on September 30, 2009)
3. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering Adaptive Multi-

Agent Systems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini,
P. (eds.) Agent-Oriented Methodologies, pp. 172–202. Idea Group Publishing, NY
(2005)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Modeling
Early Requirements in Tropos: A Transformation Based Approach. In: Wooldridge,
M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 151–168.
Springer, Heidelberg (2002)

5. Moore, B., et al.: Eclipse Development using Graphical Editing Framework and
the Eclipse Modelling Framework. IBM Redbooks (2004)

6. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: INGENIAS Devel-
opment Assisted with Model Transformation By-Example: A Practical Case. In:
7th International Conference on Practical Applications of Agents and Multi-Agent
Systems (PAAMS 2009). Advances in Soft Computing, vol. 55, pp. 40–49. Springer,
Heidelberg (2009)

7. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model transforma-
tion by-example: an algorithm for generating many-to-many transformation rules
in several model transformation languages. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 52–66. Springer, Heidelberg (2009)

8. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Publish-
ing, USA (2005)

9. Jung, Y., Lee, J., Kim, M.: Multi-agent based community computing system de-
velopment with the model driven architecture. In: AAMAS 2006: Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 1329–1331. ACM, New York (2006)

10. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science 152, 125–142 (2006)

11. Object Management Group: Model driven architecture guide version 1.0.1, omg
document ad/2002-04-10 (2002) (June 2003)

12. Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: The INGENIAS Methodology and
Tools. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies,
pp. 236–276. Idea Group Publishing, NY (2005)

13. Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Mod-
elling. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950,
pp. 167–178. Springer, Heidelberg (2006)

14. Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.-P.: Model Driven Engi-
neering for Designing Adaptive Multi-Agents Systems. In: Artikis, A., O’Hare,
G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995,
pp. 318–332. Springer, Heidelberg (2008), http://www.springerlink.com

15. Varró, D.: Model transformation by example. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer,
Heidelberg (2006)

http://www.eclipse.org/m2m/atl/atlTransformations/
http://www.springerlink.com

www.manaraa.com

64 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

16. Varró, D., Balogh, Z.: Automating model transformation by example using induc-
tive logic programming. In: Proceedings of the 2007 ACM Symposium on Applied
computing, pp. 978–984 (2007)

17. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transfor-
mation By-Example. In: Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, vol. 40(10), p. 4770 (2007)

A Generated ATL Transformation for the
Usecase2Interaction Transformation

module a2b_2; -- Module Template
create OUT : MMB from IN : MMA;
-- For the two new built entities and relations
helper def: newEntities: Sequence(MMB!GeneralEntity)=Sequence{};
helper def: newRelations: Sequence(MMB!GeneralRelation)=Sequence{};

----------------------------- Rules for Patterns ----------------------

-- Rule1
rule Rule1 {
from

cin:MMA!UMLDescribesUseCase(
cin._view_type=’INGENIAS’ and
cin.UMLDescribesUseCasesource._view_type=’INGENIAS’ and
cin.UMLDescribesUseCasesource.entity._view_type=’INGENIAS’ and
cin.UMLDescribesUseCasesource.attributeToShow=’0’ and
cin.UMLDescribesUseCasetarget->select(t|

t._view_type=’INGENIAS’ and
t.attributeToShow=’0’ and
t.UMLDescribesUseCasetargetInteraction._view_type=’INGENIAS’)

.notEmpty() and MMA!UseCasePursues.allInstances()->select(e|
e._view_type=’INGENIAS’ and
e.UseCasePursuessource._view_type=’INGENIAS’ and
e.UseCasePursuessource.attributeToShow=’0’ and
e.UseCasePursuessource.UseCasePursuessourceGoal._view_type=’UML’ and
e.UseCasePursuestarget->select(t|

t._view_type=’INGENIAS’ and
t.entity._view_type=’INGENIAS’ and
t.attributeToShow=’0’).notEmpty()).notEmpty() and

MMA!Goal.allInstances()->select(e|
e._view_type=’UML’).notEmpty() and

MMA!Interaction.allInstances()->select(e|
e._view_type=’INGENIAS’).notEmpty() and

MMA!INGENIASUseCase.allInstances()->select(e|
e._view_type=’INGENIAS’).notEmpty())

to
Interaction0xid:MMB!Interaction(

_view_type<-INGENIAS,
id<-cin.UMLDescribesUseCasetarget->select(t|t._view_type=’INGENIAS’ and

t.attributeToShow=’0’).first().UMLDescribesUseCasetargetInteraction.id,
TransferredInfo<-),

AUMLSpecification0:MMB!AUMLSpecification(
_view_type<-INGENIAS,
id<-AUMLSpecification0),

GRASIASpecification0:MMB!GRASIASpecification(
_view_type<-INGENIAS,
id<-GRASIASpecification0),

newid4:MMB!IHasSpecsource(
_view_type<-INGENIAS,
id<-newid4,
attributeToShow<-0,
IHasSpecsourceInteraction<-Interaction0xid),

newid5:MMB!IHasSpectarget(

www.manaraa.com

Model Transformations for Improving Multi-agent System Development 65

_view_type<-INGENIAS,
id<-newid5,
entity<-AUMLSpecification0,
attributeToShow<-0),

9:MMB!IHasSpec(
_view_type<-INGENIAS,
id<-9,
end<-’’,
IHasSpecsource<-newid4,
IHasSpectarget<-newid5),

newid6:MMB!IHasSpecsource(
_view_type<-INGENIAS,
id<-newid6,
attributeToShow<-0,
IHasSpecsourceInteraction<-Interaction0xid),

newid7:MMB!IHasSpectarget(
_view_type<-INGENIAS,
id<-newid7,
entity<-GRASIASpecification0,
attributeToShow<-0),

11:MMB!IHasSpec(
_view_type<-INGENIAS,
id<-11,
end<-’’,
IHasSpecsource<-newid6,
IHasSpectarget<-newid7)

do{
thisModule.newEntities<-thisModule.newEntities.append(Interaction0xid);
thisModule.newEntities<-thisModule.newEntities.append(AUMLSpecification0);
thisModule.newEntities<-thisModule.newEntities.append(GRASIASpecification0);
thisModule.newRelations<-thisModule.newRelations.append(9);
thisModule.newRelations<-thisModule.newRelations.append(11);

}
}

------------- Rule for Specification -----------------------------

rule Specification{
from

cin:MMA!Specification
to

cout:MMB!Specification
do{

-- We add the new entities and the new relations
for(e in thisModule.newEntities){

cout.entities<-e;
}
for(r in thisModule.newRelations){

cout.relations<-r;
}

}
}

www.manaraa.com

Automated Testing for Intelligent Agent Systems

Zhiyong Zhang, John Thangarajah, and Lin Padgham

RMIT University, Melbourne, Australia
pdt@cs.rmit.edu.au

Abstract. This paper describes an approach to unit testing of plan based agent
systems, with a focus on automated generation and execution of test cases. Design
artefacts, supplemented with some additional data, provide the basis for specifica-
tion of a comprehensive suite of test cases. Correctness of execution is evaluated
against a design model, and a comprehensive report of errors and warnings is pro-
vided to the user. Given that it is impossible to design test suites which execute
all possible traces of an agent program, it is extremely important to thoroughly
test all units in as wide a variety of situations as possible to ensure acceptable
behaviour. We provide details of the information required in design models or
related data to enable the automated generation and execution of test cases. We
also briefly describe the implemented tool which realises this approach.

1 Introduction

The use of agent technology for building complex systems is increasing, and there are
compelling reasons to use this technology. Benfield [1] showed a productivity gain of
over 300% using a BDI (Belief Desire Intention) agent approach, while Padgham and
Winikoff calculated that a very modest plan and goal structure provides well over a mil-
lion ways to achieve a given goal [2, p.16], providing enormous flexibility in a modular
manner. However the complexity of the systems that can be built using this technology,
does create concerns about how to verify and validate their correctness. In this paper we
describe an approach and tool to assist in comprehensive automated unit testing within a
BDI agent system. While this approach can never guarantee program correctness, com-
prehensive testing certainly increases confidence that there are no major problems. The
fact that we automate both test case generation, as well as execution, greatly increases
the likelihood that the testing will be done in a comprehensive manner.

Given the enormous number of possible executions of even a single goal, it is virtu-
ally impossible to attempt to test all program traces. Once interleaved goals within an
agent, or interactions between agents are considered, comprehensive testing of all exe-
cuting becomes clearly impossible. Instead, we focus on testing of the basic units of the
agent program - the beliefs, plans and events (or messages). Our approach is to ascertain
that no matter what the input variables to an entity, or the environment conditions which
the entity may rely on, the entity behaves “as expected”. Our notion of expectations is
obtained from design artefacts, produced as part of an agent design methodology. We
focus in this paper on the details of how we determine variable values for test cases
to provide comprehensive coverage, and the representations and mechanisms we use
to allow us to automate the process (though also providing mechanisms for user speci-
fied test cases where desired.) We build on our previous work in [3] which described a

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 66–79, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

Automated Testing for Intelligent Agent Systems 67

basic architecture and approach. However we address in this paper some of the details
necessary to effectively realize that approach.

There are two specific aspects of automated test generation and execution which we
focus on in this paper. The first is how to specify values relevant to a particular unit to
be tested, and how to generate appropriate test cases that adequately cover the space
of value combinations for all relevant variables. Doing this appropriately is critical in
order to be able to have confidence that the testing process was thorough. The second
important aspect is the setting up of the environment such that the unit to be tested
can be executed appropriately. One aspect of this is to ensure that units which are de-
pended on are tested first, and then included in the environment for the unit being tested.
However in many real applications there may be interaction with an external program
within a plan unit (e.g. a query to an external database of a web service). There may
also be interaction with another agent within a testing unit. In these cases we must
ensure that access to the external program is set up prior to testing, and that there is
some mechanism for dealing with necessary interaction with other agents. We note that
most interaction with other agents would not be within a testing unit. Typically an agent
would generate a message in one plan, and handle it another, in which case there is no
need to model the other agent in any way.

In the following sections we first provide an overview of the testing process of our
previous work [3], the framework on which this work is based. In section 3, we de-
scribe the automated process for test case generation. Section 4 then covers the details
needed to provide the environment where the units can be executed, including how to
automatically generate mock agents to simulate interaction if necessary. We provide
in section 5 a brief discussion of the implemented system and some results from its
use, concluding in section 6 with a brief comparison to other work and directions for
ongoing development.

2 Testing Process Overview

In [3], we present a model based framework for unit testing in agent systems, where
the models used are provided by the design diagrams of the Prometheus methodology,
a well established agent development methodology [2]. The Prometheus methodology,
and associated Prometheus Design Tool (PDT) produces graphical models capturing
relationships between basic entities such as goals, plans and beliefs. It also produces
descriptors which collect together a range of design information for each design entity.
The detailed design entities map closely to implementation entities and are utilized for
generation of skeleton code. They can also be used for generation of test cases and
analysis of testing results.

Figure 1 outlines the components of an agent that is developed using the Prometheus
methodology. These components are typical for most systems that follow the Belief De-
sire Intention (BDI) model of agency [4]. An agent contains plans, events and beliefs
and can have capabilities that encapsulate them for modularity. Percepts (external input
to the system), messages (from other agents) and internal events are all considered as
events in agent development tools such as JACK [5] and we use this same generaliza-
tion. In brief, the agent uses its plans to handle events as they occur and may query and

www.manaraa.com

68 Z. Zhang, J. Thangarajah, and L. Padgham

Action

Percept

MessagePlan Event

BeliefsPlan Event

Agent

Capability

Beliefs

Fig. 1. Agent Component Hierarchy in
Prometheus

Fig. 2. Plan Dependencies

update its beliefs as needed during this process. Belief changes may automatically gen-
erate events. Given the above components, the units to be tested are the events, plans
and beliefs. This extends the work in [3] which covered only events and plans.

Events are tested with respect to coverage and overlap. Coverage refers to the ex-
pectation that an event will always be handled by at least one plan in any situation.
Overlap refers to the possibility that there may be more than one plan that is applicable
for handling a given event, in some situation. While it is not necessarily an error to have
an event without full coverage, or with overlap, these are common sources of error in
agent programs [6]. Consequently PDT prompts developers to consider and to specify
expected coverage and overlap as part of design of events. Test case results are then
compared against the design specification.

A plan definition includes the type of event which triggers it, a context condition that
determines its applicability in a given situation, and a plan body. The body of a plan
may contain actions (considered atomic) and/or post sub-events (sub-tasks). Plans are
tested for the following:

– Does the plan get triggered by the event that it is supposed to handle? If it does not,
then either some other plan always handles it or there is an inconsistency between
design and implementation.

– Is the context condition valid in some situations? If no context condition is specified
then the plan is always applicable. However, if a context condition is specified
then there must be at least some situation where it is satisfied for the plan to be
applicable. If it is satisfied in any situation that could also indicate an error as it that
is the equivalent of an empty context condition.

– Does the plan post the events that it should? Events are posted from a plan to initiate
sub-tasks (or messages sent to other agents). If some expected events are never
posted, we need to identify them as this may be an error. Here we can only check
if the design matches the code, and can not check, for example, if the internal logic
of the plan is correct/sensible or if the event/message contains the correct data.

– Does the plan complete? It is possible to determine whether the plan executed to
completion. However, we cannot determine whether the plan completed success-
fully as the information required to determine the success of the plan is not cur-
rently contained in an extractable format in the design specification.

If a plan A posts a sub-task (sub-event) that is handled by plan B then the success of
plan A is dependent on plan B, which should in general be tested before A. There may
however be cyclic dependencies. For example, in Figure 2 P0, P2 and P1 are what is
termed a Plan Cycle [3].

www.manaraa.com

Automated Testing for Intelligent Agent Systems 69

Plan cycles are a special case of testing plans, in that, in addition to testing for the
aspects specific to plans, each plan cycle is considered as a single unit and tested for
the existence and the termination of the cycle at run-time. If the cycle doesn’t terminate
after a maximum number of iterations this generates a warning to the user. If the cycle
never occurs a warning is given as the cycle may have been a deliberate design decision.

While in the general case, events are generated from external input or from within a
plan body, events may also be generated automatically when certain beliefs (conditions)
become true. For example, if a robot agent believes the energy level to be less than 10%
it may generate an event to re-charge. In agent systems like JACK [5] such events are
implemented as database call-backs, other systems may implement them in the form of
active databases, for example [7]. For every belief that generates such events, we test if
the appropriate events get posted in the situations as specified in the design. This aspect
of testing beliefs is an addition to the framework presented in [3].

The testing process consists of a number of steps which we outline briefly below.

1. Determine the order in which the units (events, plans, plan cycles and belief-sets)
are to be tested. If a plan contains sub-tasks the success of the plan is partially
dependent on the plan(s) that satisfy the sub-tasks. For example, in Figure 2 the
success of plan P0 depends on the success of P2 or P3. The order of testing is
therefore bottom-up where a unit is tested before the units that depend on it.

2. Develop test cases with suitable input value combinations as described in section 3.
3. Augment the source code of the system under test with special testing code to

provide appropriate information to the testing system.
4. Execute the test cases, collect and analyze results and produce a detailed report. The

report contains both errors and warnings, where the warnings are things which are
likely to be errors, but which could be intended, or be due to lack of an appropriate
test case (e.g. failure to have a context condition become true in any test, may be
that a new specialized test needs to be added).

All of the above steps are automated and can be performed on a partial implementation
of the system if desired. Figure 3, provides an abstract view of the testing framework
for a plan unit. There are two distinct components: the Test driver and the Subsystem
under test. The former contains the Test Agent, that generates the test cases and executes
the test cases by sending an Activation Message to the Test-Driver Plan. This plan is
embedded into the Subsystem under test during the code augmentation phase, and is

Finished Message

Triggering EventTest−Driver Plan

Results Message

agent

Test Agent

sends

sends

sends

sends

posts

Subsystem under test

Plan−under−Test

Activation Message

Test driver

Fig. 3. Abstract Testing Framework for a Plan

www.manaraa.com

70 Z. Zhang, J. Thangarajah, and L. Padgham

responsible for setting up the test input and activating the Subsystem under test via a
Triggering Event.

The subsystem contains the units to be tested and other parts of the system required
to activate them. These units under test are able to send Results Messages back to the
Test Agent via testing specific code inserted into them. After all testing is complete the
Test Agent generates the test report.

3 Test Case Generation

Test cases are automatically generated for each unit, by extracting relevant variables
from the design documents and generating variable value combinations. It is important
to ensure that there is comprehensive coverage of the different possible situations the
unit may execute in, so the choice of variable values is very important. At the same
time, it is impossible to test all values, so choices must be made carefully. We also
need to know which variables (in the environment, in the agent’s beliefs, or in the unit
itself) affect the particular unit. This is specified in the design documentation. These
specifications enable automatic extraction of the variables.

Some examples are:

[event-var, book.bookName, string, !=null]
[belief-var, (StockDB, numberInStock), int, >0]

Table 1. Example of equivalence classes

name index domain valid minimal normal comprehensive
bookID EC-1 (-∞, 0) no N/A -1 -1

EC-2 [0, +∞) yes 0 0, 1 0, 1
stock EC-1 (-∞, 0) no N/A -1 -1

EC-2 [0, 200] yes 0, 200 0, 1, 199, 200 0, 1, 100, 199, 200
EC-3 (200, +∞) no N/A 201 201

price EC-1 (-∞, 0.0] no 0.0 -0.1, 0.0 -0.1, 0.0
EC-2 (0.0, 90.0] yes 90 0.1, 89.9, 90 0.1, 45.0, 89.9, 90.0
EC-3 (90.0, +∞) no 90.1 90.1 90.1

Having automatically extracted the variables from the design for a particular unit, the
next step in the testing process is to generate values for these variables which will test
the unit. In many cases it is not possible to test all possible values as the domain may be
infinite or very large. We use the standard notions of Equivalence Class Partitioning and
Boundary Value Analysis [8, p.67] to generate a limited set of values for each relevant
variable. An Equivalence Class (EC) is a range of values such that if any value in that
range is processed correctly (or incorrectly) then it can be assumed that all other values
in the range will be processed correctly (or incorrectly). Boundary values mark the
(non-infinity) ends of an EC, and are often values which cause errors. Some approaches
to testing use only valid ECs [9, p.98], while others improve robustness by also using
invalid ECs [9, p.99] [10, p.39] [8, p.67] .

In our approach we allow the user to select from three different levels for choice of
values for variables:

www.manaraa.com

Automated Testing for Intelligent Agent Systems 71

1. Minimal level is restricted to valid values, and uses boundary values for the valid
ECs.

2. Normal level uses both valid and invalid ECs, selecting boundary values, and values
close to the boundary, for each EC.

3. Comprehensive level also adds a nominal value in the mid-range of each EC.

To illustrate the above let us consider the following variables:

[agent-var, bookID, int, ≥ 0]
[agent-var, stock, int, ≥ 0, ≤ 200]
[agent-var, price, float, >0.0, <= 90.0]

Table 1 gives their ECs, and the choice of values from the three levels. Having chosen
test values for each relevant variable these must be combined in various ways to produce
test cases. Some approaches to testing simply ensure that for each variable, there is at
least one test case with each of the values chosen [9, p.98] [8, p.71] [11, p.55]. A
more thorough approach recognizes that many errors are a result of interactions between
variable values, and takes the cross product of all values for each variable. The problem
is that the latter quickly gives a very large number of test cases. The first approach caps
the number of test cases at the largest number of values for any variable. The second is
the cartesian product of the number of values for each variable, which quickly explodes.
For example if we have five variables, each with five values, it gives over 3,000 test
cases.

A commonly used approach to reduce the number of combinations is combinatorial
design [12]. This approach generates a new set of value combinations that cover all n-
wise (n>=2) interactions among the test parameters and their values in order to reduce
the size of the input data set. We use the Combinatorial Testing Service software library
of Hartman and Raskin1 which implements this approach, in our system. However we
apply this reduction only to test cases involving invalid values. We use all combinations
of valid values, on the assumption that, for agent systems, it is interactions between
valid variable values which will cause different aspects of the code to be activated (most
commonly different plans chosen), and that covering all such interactions is necessary
in order to adequately evaluate if the system is behaving correctly.

As with choice of values we allow the user to choose between different levels of
thoroughness in testing. We provide the following options:

1. Basic level takes the cartesian product of valid values, and then adds one additional
case for each invalid value, based on the assumption that invalid values do not
require so rigorous testing as valid values.

2. Extended level supplements the results with all valid value cartesian products not
in the set obtained using the pairwise reduction of combinatorial design [12].

In addition to the test cases that are auto-generated as described above, the user may
wish to specify additional test cases using his domain and design knowledge. The test-
ing framework accommodates this by means of a Test Case Input window in PDT for a
given unit under test.

1 http://www.alphaworks.ibm.com/tech/cts (obtained July 2006, technology
now retired).

http://www.alphaworks.ibm.com/tech/cts

www.manaraa.com

72 Z. Zhang, J. Thangarajah, and L. Padgham

4 Test Case Execution

In order to execute a test case we need to first set up the environment so that it is able
to run. Depending on the unit this may include such things as setting up sockets for
communicating with an external process, setting up a global data structure that will be
accessed, and so on. Then we also need to assign the values we have chosen for the rele-
vant test case, to the appropriate variables, which requires knowing how these variables
are implemented in the code. In this section we describe the details of the execution
process, and the information representation which we require in order for this to be
fully automated.

Initialization Procedures
The testing process tests each individual unit. Prior to executing the test case for that unit
however, it may be necessary to perform some initialization routines such as setting up
connections to external servers, populating databases, initializing global variables and
so on.

In the testing framework we allow these routines to be specified as initialization
procedures for each unit in the Unit Test Descriptor (see Figure 5). The Unit Test De-
scriptor captures testing specific properties of the unit which is in addition to the usual
design descriptor that specifies the properties of the unit. We allow multiple procedures
to be specified where each are in the following format:

<order, owner object, is static, function call, comment>.

Figure 4, is an example of such a specification. In this example, the unit requires the
initBookDB function of the StockAgent to be called as the first initialization proce-
dure. The method is static, hence can be invoked directly from the StockAgent class.
When complete the next method initConnAmazon is executed.

order owner object is static function call comment
1 Stock Agent yes initBookDB() method to populate the books database
2 BuyPlan no initConnAmazon() sets up connection to Amazon.com

Fig. 4. Example specification of initialization procedures

Variable Assignment
In section 3 test cases were defined by generating values for each specified variable of
the unit under test. To execute the test case these values must be assigned to the vari-
ables. The technique for assigning a value to a variable may vary depending on how
the variable is coded in the implementation of the system. For example, a variable that
is private to an object2 needs to be set via the object’s mutator functions. Because the
testing process is fully automated, it is necessary that there be some specification of
an assignment relation to allow appropriate assignment of variable values to the imple-
mentation of the variable in the code.

2 In terms of Object Oriented programming.

www.manaraa.com

Automated Testing for Intelligent Agent Systems 73

Fig. 5. Illustration of complex variables

This assignment relation is specified in the Unit Test Descriptor of the unit and takes
the following form for each variable:

<variable-name, type, assignment>

where the type is classified as simple, complex, belief or function based on how the
variable is implemented in the source code of the system under test. The assignment
relation depends on these types and we describe them below:

A simple variable is implemented as a public variable, which could be directly set,
or a private variable that is set via a public mutator function. In general, if no assign-
ment relation is specified for a variable, the assumed default is a simple variable that is
publicly accessible.

A complex variable is one that is part of a nested structure, such as an attribute of an
object, which may in turn be part of another object and so on. For example, in Figure
5, the variables Email and Name : are attributes of the attd object of type Attendee
in the triggering event of the plan. The assignment relation for the Email variable is
attd.email as it is a public attribute of that object and can be set directly. The Name :
however, has to be set via the att.setName(String) method.

Belief variables are fields of a particular belief-set. For example:

[belief-var, (StockDB, bookID), int, ==1]
[belief-var, (StockDB, inStock), int, >0 , <5]

They do not require an assignment function as the technique for assigning variables
would be the same for any field of the belief. That is, create and insert a record with the
values generated for the belief variables in concern and random values for the rest of the
fields for that record. For example, in Figure 6 the first test case is setup by creating and
inserting a record for the StockDB beliefset with fields bookID and inStock set to 1

www.manaraa.com

74 Z. Zhang, J. Thangarajah, and L. Padgham

Fig. 6. Illustration of belief variables

and 5 respectively, and creating and inserting a record for the StockOrders beliefset
with fields bookID and required set to set to 1 and 30 respectively3.

Although the automated test cases contain randomly generated values for the belief
fields that are not specified as unit test variables, as with all the test units the user may
specify additional test cases (value combinations) prior to executing the tests.

A special case of belief variables is when historical information is required. For ex-
ample, if the context condition of the plan contains the following:

StockDB.getStockAt(t1) > StockDB.getStockAt(t2)
the design document will contain:
[belief-var, StockDB, numberInStock, int, >0].

If we follow the approach above, value combinations will be generated for
numberInStock but only one record will be inserted per test case, which would be in-
sufficient to evaluate that particular context. In the general case, this situation is where
the belief-set is to be populated with multiple rows. There are two alternatives for test-
ing such situations in our testing framework.

The first is for the user to specify a test case manually for this belief. When specifying
a test case manually for a belief, the user is given the option to add as many rows as
desired. This approach however could be tedious if many rows are to be inserted. The
second approach is to provide a method for populating the database as an initialization
procedure of the unit under test.

There may be instances where a variable in the design is realized by a function in
the implementation. We term these variables as function variables. For example, the
variable total order cost which requires some calculation. It is not possible to set the
value of these variables as it depends on the value returned by the function. This value
may depend on a number of other variables, some local to the function others outside.
The current testing framework ignores such variables when generating test cases.

One way in which function variables could be tested is if the user specified all non lo-
cal variables within the function that determine the return value in the design document
and value combinations are generated for these variables. Another approach would be
to augment the system source code to replace the call to the function by another variable
whose values can be set for testing purposes.

3 “SD” and “SO” are the abbreviated names of “StockDB” and “StockOrders” respectively, and
random indicates that the value is a generated randomly.

www.manaraa.com

Automated Testing for Intelligent Agent Systems 75

Interaction with external entities: Ideally the test cases should be run in a controlled
environment such that any errors may be isolated to the unit under test. As a plan of
an agent executes, it may interact with other entities, external to the agent containing
the units being tested. We deal with two types of such external interactions: interactions
with (i) external systems (e.g. external database server or another agent system) or with
(ii) external agents that are part of the same system.

With respect to external systems, the interface to the agent under test may take var-
ious different forms, hence it is not straightforward to simulate this interaction in a
controlled manner. Also, under the assumption that the external system is ”fixed” (i.e.
it is not under development, or able to be influenced), it is important that the unit under
test respond appropriately to any interaction that happens with regard to such a system.
Therefore the user is expected to ensure that such systems are accessible and function-
ing correctly prior to start of testing. User alerts/notifications to check this are generated
based on design documentation, but can be turned off if desired.

If the interaction is with another agent of the same system, the form of interaction is
known, making it possible to simulate and control this interaction. This is particularly
important as some of these interactee agents (i.e. the external agents that the plan in-
teracts with) may not have been fully implemented or tested. The technique employed
is to replace the interactee agent with a test stub [8, p.148], [13, p.963]. We call such a
test stub as a Mock Agent.

Functionality of a Mock Agent: A mock agent simulates the message send-reply logic
of the interactee agent that it replaces. When a plan is executed during its testing pro-
cess, any message from the plan to an interactee agent will be received by the replace-
ment mock agent. When the mock agent receives a message from the plan-under-test, it
will have one of two possible responses dependent on the design specification: (i) If the
design does not specify a reply to the message received, the mock agent will just log
the message received, and do nothing else; (ii) If the design specifies a reply message
to the message received, the mock agent will log the message received, generate a reply
message and send it to the plan-under-test. The data contained in the reply message in
the current implementation is randomly assigned as the mock agent only simulates the
interactee agent at the interaction level, and does not realise its internal logic4.

Implementing a Mock Agent: The mock agents are automatically created when the
testing framework builds the testing code for a plan. The process for generating the
code of mock agents for a plan is as follows. First, all outgoing messaged are extracted
from the plan under test. For each message, the interactee agent type that receives the
message is identified. For each of the identified interactee agent type, the testing frame-
work generates the code of a mock agent type that replaces this interactee agent type,
following the rules below:

– The mock agent type shares the same type name as its replaced interactee agent
type. Furthermore, if the interactee agent type has been implemented, the mock
agent type also implements the same constructors as the constructors of it.

4 We are in the process of allowing users to define specific responses associated with certain test
cases, in a similar manner to other user defined test case information.

www.manaraa.com

76 Z. Zhang, J. Thangarajah, and L. Padgham

– For each message received by the interactee agent type, one plan is defined that
handles this message in the mock agent. If this message has a reply specified in the
design, this newly defined plan will create an object of the reply message and send
it back to the agent-under-test. Else, the plan simply logs the message received.

– The code of this mock agent type is embedded into the test implementation to
replace the code of its respective interactee agent type. Any message that is sent to
the interactee agent will be received by this mock agent.

5 Implementation

The testing tool and approach described has been implemented within PDT, relying on
the implemented agent system being in JACK. The implementation which does code
augmentation for testing also relies on the code having a particular structure, and so
requires that code skeletons are generated via PDT. The design descriptors used are
those that are part of the normal design process. However, additional testing descriptors
have been added, in order to map design variables to implementation variables, and to
specify details of initialization that is necessary for execution.

An initial validation of the testing tool has been done using the case study of the
Electronic Bookstore system as described in [14]. The Stock Manager agent was im-
plemented according to the design specified, and then deliberately seeded with a range
of faults, such as failing to post an expected message. For example, the Stock Manager
agent is designed with the plan Out of stock response which posts the subtask Decide
supplier, if the default supplier is out of stock and the number of books ordered is not
greater than 100. The code was modified so that the condition check never returned
true, resulting in the Decide supplier subtask never being posted. Examples of all faults
which the testing system would be expected to recognize, were introduced into the
Stock Manager agent. The testing framework generated 252 test cases using the “Nor-
mal” level of value generation and “Extended” combinations of values, as described in
section 3. As could be expected, all seeded faults were found by the tool.

We are currently in the process of doing a more thorough evaluation, using a number
of programs with design models, developed as part of a class on Agent Programming
and Design. Once this is completed we will be able to comment on the kind of faults
identified and the relationship of these to errors identified during marking the assign-
ments. We have also evaluated the testing system on a demonstration program devel-
oped for teaching purposes. In this program 22 units were tested with 208 automatically
generated test cases. This uncovered 2 errors where messages were not posted as spec-
ified in the design (apparently due to unfinished coding), and one error where invalid
data caused an exception to be thrown. This program was developed as an exemplar
and had been tested by its developer. Consequently the results of this testing process do
indicate that the generation and execution of automated test cases, based on the design
models, was effective in uncovering bugs in the system.

6 Discussion and Conclusion

In this paper we have presented an approach to testing of agent systems, which relies
on unit testing with extensive coverage, and on design models as input to the analysis

www.manaraa.com

Automated Testing for Intelligent Agent Systems 77

of correct vs faulty behaviour. This work is based on the testing framework described
in our previous work [3], where, we define the units to be tested, the scope of testing
(the type of faults) and outline the testing process, providing some detailed mechanisms
such as the algorithms for determining the order in which the units are to be tested.

In this work we provide the specific details of how variables are specified, extracted
and assigned values to create test cases, and mechanisms for setting up the environment
to execute the test cases automatically.

The approach presented is an unit testing approach to goal-plan based agent systems.
The approach and mechanisms are implemented in PDT and JACK, and hence some
of the examples that we have illustrated are PDT/JACK specific. However, we note
that the approach, concepts, algorithms and processes can be adopted to any goal-plan
based agent system. The design tool should allow for the information required to be
specified and design time and automatically extracted at the testing phase. The code
augmentation and monitoring would need to be implemented in the agent programming
language as we have done in JACK following the algorithms and processes detailed in
this paper and our previous work [3].

Different approaches to model based testing have focused on different kinds of mod-
els, which are then used to generate certain kinds of test cases. For example Apfelbaum
and Doyle [15] describe model based testing focusing on use case scenarios defined by
sequences of actions and paths through the code, which are then used to generate the
test cases. This kind of testing is similar to integration testing or acceptance testing, and
is something we would eventually hope to add to our system. Others (e.g. [16]) focus
on models that specify correct input and output data, but these are not so appropriate
for testing of complex behaviour models.

Binder [13, p.111] has summarized the elements of UML diagrams, exploring how
these elements can be used for test design and how to develop UML models with suffi-
cient information to produce test cases. He developed a range of testability extensions
for each kind of UML diagram where such is needed for test generation. What we have
done is somewhat similar to this for the basic elements of agent systems.

Besides Prometheus, various agent system development methodologies such as Tro-
pos [17], MASE [18] and others, also have well developed structured models that could
be used in a similar way to the PDT models used in this work. Several agent platforms
do already use design models for some level of assistance in generation of test cases.

For example, the eCAT system associated with Tropos [19,20,21,22] is a testing
tool that applies a goal oriented testing approach, which is based on the goal model of
an agent based system. Such a goal model specifies the goal hierarchy of the system,
describing how goals are decomposed to elementary goals. It is supplemented with
ontology information for the purpose of automated test input generation [22], Positive
test cases and negative test cases are then derived from the goal model to respectively
verify the fulfillment (or not) of every elementary goal. However, the eCAT system does
not explore internal components within an agent such as events and plans and does not
verify if they work as expected.

Knublauch [23] introduces a set of APIs that are extended from the JUNIT testing
framework [24], and explores an approach to test agent systems based on the design
model of the Gaia methodology using these APIs. Human developers can use these

www.manaraa.com

78 Z. Zhang, J. Thangarajah, and L. Padgham

APIs to develop test cases that are automatically executed. However, test cases are still
required to be manually generated. Also, this approach does not explore agents’ internal
units.

Other agent development systems also have their testing support subsystems. Coelho
et.al [25] develop the JAT framework for testing the agents developed by the JADE [26]
platform. They have defined a fault model that specifies a set of fault types relevant
to general agent features. The testing framework provides skeleton code for human
developer to manually develop test cases based on the fault model. A tester agent is
used in the testing framework to automate the execution of test cases. Tiryaki develops
the SUNIT [27] testing framework, which tests the agent systems developed by the
Seagent platform [28]. SUNIT, which is also on top of JUNIT, specifies a set of APIs
for human developers to manually generate test cases based on the SEAGENT model
of an agent system. The SUNIT framework also explores internal features of an agent,
such as the plan-level structure hierarchy of an agent and actions performed by plans.

To our knowledge, our testing tool is the only agent testing system which focuses on
unit testing internal components of an agent, and also fully automates the generation of
test cases as well as the running of them.

We believe that comprehensive automated unit testing is a critical first step in thor-
ough testing of agent systems. However it is limited in what it tests for. Yet, the fact that
the tool managed to find errors in a carefully developed and manually tested system, is
an indication that the approach followed is already valuable.

In future work we expect to add testing related to the satisfactory following of sce-
narios as specified during requirements, as well as testing of agent interactions. We
would expect to be able to adapt the debugging work of [6] using protocol specifica-
tions for the agent interaction testing and also refer to other research on interactions in
agent systems (such as [29]).

References

1. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong business case for multiagent
technology. In: Proceedings of AAMAS 2006, pp. 10–15. ACM, New York (2006)

2. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide.
John Wiley and Sons, Chichester (2004)

3. Zhang, Z., Thangarajah, J., Padgham, L.: Automated Unit Testing For Agent Systems. In:
2nd International Working Conference on Evaluation of Novel Approaches to Software En-
gineering (ENASE 2007), Spain, pp. 10–18 (July 2007)

4. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Lesser, V. (ed.) The
First International Conference on Multi-Agent Systems, San Francisco, pp. 312–319 (1995)

5. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents — Components
for Intelligent Agents in Java. AgentLink News (2) (1999)

6. Poutakidis, D., Padgham, L., Winikoff, M.: An Exploration of Bugs and Debugging in Multi-
agent Systems. In: Proceedings of AAMAS 2003, pp. 1100–1101. ACM, NY (2003)

7. Paton, N.W., Dı́az, O.: Active Database Systems. ACM Comput. Surv. 31(1), 63–103 (1999)
8. Burnstein, I.: Practical Software Testing. Springer, New York (2002)
9. Jorgensen, P.C.: Software Testing: A Craftsman’s Approach, 2nd edn. CRC Press,

Boca Raton (2002)

www.manaraa.com

Automated Testing for Intelligent Agent Systems 79

10. Copeland, L.: A Practitioner’s Guide to Software Test Design. Artech House, Inc., Norwood
(2003)

11. Myers, G.J., Sandler, C., Badgett, T., Thomas, T.M.: The Art of Software Testing, 2nd edn.
Wiley, Chichester (2004)

12. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An Approach to
Testing Based on Combinatiorial Design. Software Engineering 23(7), 437–444 (1997)

13. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

14. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A practical guide. John
Wiley and Sons, Chichester (2004)

15. Apfelbaum, L., Doyle, J.: Model Based Testing. In: The 10th International Software Quality
Week Conference, CA, USA (1997)

16. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Bellcore, B.: Model-Based
Testing in Practice. In: International Conference on Software Engineering (1999)

17. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

18. DeLoach, S.A.: Analysis and Design using MaSE and agentTool. In: Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference, Oxford, Ohio (2001)

19. Nguyen, C.D., Perini, A., Tonella, P.: A goal-oriented software testing methodology. Techni-
cal report, ITC-irst (2006),
http://sra.itc.it/images/sepapers/gost-techreport.pdf

20. Nguyen, C.D., Perini, A., Tonella, P.: Automated continuous testing of multi-agent systems
(December 2007)

21. Nguyen, C.D., Perini, A., Tonella, P.: Experimental evaluation of ontology-based test gener-
ation for multi-agent systems, pp. 187–198 (2009)

22. Nguyen, C.D., Perini, A., Tonella, P.: Ontology-based Test Generation for Multi-agent Sys-
tems. In: Proceedings of AAMAS 2008, pp. 1315–1320 (2008)

23. Knublauch, H.: Extreme programming of multi-agent systems (2002)
24. Husted, T., Massol, V.: JUnit in Action. Manning Publications Co. (2003)
25. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit Testing in Multi-Agent Systems using

Mock Agents and Aspects. In: Proceedings of the 2006 International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems, pp. 83–90 (2006)

26. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA2000 Compliant Agent Development
Environment. In: Proceedings of Agents Fifth International Conference on Autonomous
Agents, pp. 216–217 (2001)

27. Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: SUNIT: A unit testing framework for
test driven development of multi-agent systems. In: Padgham, L., Zambonelli, F. (eds.) AOSE
VII / AOSE 2006. LNCS, vol. 4405, pp. 156–173. Springer, Heidelberg (2007)

28. Dikenelli, O.: SEAGENT MAS Platform Development Environment. In: Proceedings of
AAMAS 2008, pp. 1671–1672 (2008)

29. EI Fallah-Seghrouchni, A., Haddad, S., Mazouzi, H.: A formal study of interactions in
multi-agent systems. In: Garijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS, vol. 1647.
Springer, Heidelberg (1999)

http://sra.itc.it/images/sepapers/gost-techreport.pdf

www.manaraa.com

Qualitative Modeling of MAS Dynamics
Using Systemic Modeling to Examine the Intended and

Unintended Consequences of Agent Coaction

Jan Sudeikat� and Wolfgang Renz

Multimedia Systems Laboratory,
Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

Tel.: +49-40-42875-8304
{jan.sudeikat,wolfgang.renz}@haw-hamburg.de

Abstract. The design of agent-based software applications is supported
by modeling approaches that focus on the design of individual agents as
well as their arrangement in organizational structures. However, it is a
challenging task to deduce the collective system behavior from the sum
of designs of the autonomous, pro-active actors and their collaboration
can lead to surprising effects. Therefore, developers of agent collectives
require tools to plan for the effects of agent coaction. Here, we propose
a systemic modeling level that supplements established agent-oriented
modeling approaches and utilizes System Science modeling concepts to
support qualitative examinations of the system-wide dynamics that can
result from agent coaction. We discuss the systematic derivation of sys-
temic MAS abstractions from established design notations and exemplify
systemic modeling of MAS in a case study where the interdependencies
of agent activites and their consequences are identified at design-time
and compared to run-time effects.

1 Introduction

The development of Multi-Agent Systems (MAS) is supported by sophisticated
modeling approaches and development methodologies [1] that facilitate the de-
sign of software systems as sets of autonomous, pro-active agents. These tools
typically focus on the conception of agent types and agent societies. The col-
laboration and interaction of agents establish the intended system functionality
and the effective coordination of agents is a crucial development effort.

However, the consideration of collective effects in agent-based application de-
signs is largely unexplored in methodical development procedures. In the nat-
ural sciences it has been noticed that more is different [2], i.e. that increasing

� Jan Sudeikat is doctoral candidate at the Distributed Systems and Information Sys-
tems (VSIS) group, Department of Informatics, Faculty of Mathematics, Informatics
and Natural Sciences, University of Hamburg, Vogt–Kölln–Str. 30, 22527 Hamburg,
Germany, jan.sudeika@informatik.uni-hamburg.de

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 80–93, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

Qualitative Modeling of MAS Dynamics 81

the quantity of equal system elements can lead to qualitatively different system
behaviors. Examples are self-organized and emergent phenomena where global
structures arise from the local interactions of individuals (e.g. particles, cells,
etc.). Similar effects have been observed in distributed software systems [3] and
the structural affinity between complex systems and MAS has been discussed
[4] and observed [5]. Due to this affinity, it can make a qualitative difference
whether agents (inter-)act in small or large populations and small redesigns of
agent models can have unforeseen consequences.

Therefore, it is not sufficient for methodical development practices to check
whether system elements behave as specified, but it is also necessary to check if
the coaction of the conceived elements is able to meet application requirements.
While the latter typically requires macroscopic system simulations (cf. section
5), here we discuss the examination of dynamic system properties at design-time.
Particularly, we show how a systemic modeling level, that takes inspiration from
System Dynamics [6], can be applied to anticipate the qualitative, macroscopic
behavior of MAS. The systematic derivation of these models from MAS designs
allows developers to inspect the causal structure of the application designs and
facilitates examining the dynamic properties, e.g. the presence of oscillations and
fixed points.

This paper is structured as follows. In the coming section, the systemic mod-
eling of MAS is discussed. In section 3, a procedure is presented that guides the
analysis of the dynamic properties of MAS designs. The systematic derivation of
systemic MAS models as well as their examination are discussed and exemplified
in section 4. Finally, we conclude and give prospects for future work.

2 Systemic Modeling of Collective Agent Behavior

System Dynamics provides an interdisciplinary approach to model dynamical
systems [6] and anticipate their timely behavior. At any given time-point the
system state is given by a set of accumulative values of system variables. These
variables influence each other mutually, i.e. causal relations denote the additive
(positive) or subtractive (negative) rates of changes of these properties. Circular
structures form feedback loops that are either balancing (-) and damp variable
fluctuations or reinforcing (+) and amplify perturbations of system variables.
An established formalism is the Causal Loop Diagram (CLD), a graph-based
notation which denotes system properties as linked nodes [6].

System dynamics and agent-based modeling provide contradicting approaches
to understand and simulate systems (e.g. cf. [7]). However, it has been found that
the explicit modeling of (causal) feedback structures within MAS is applicable
to describe the requirements on adaptive MAS [8], organizational dynamics [9]
and decentral coordination schemes [10]. This modeling level is applicable when
the causal interdependencies among agent types are known at design time. It
can be used to examine collective effects that originate from non-linear agent
interactons as well as MAS where multiple agent types can exhibits the same
behaviors/roles.

www.manaraa.com

82 J. Sudeikat and W. Renz

Here, we outline a MAS-specific refinement of CLD variable and link types
that has been given in [11] to facilitate the unambiguous modeling of MAS (see
[12] for a discussion of complications). Methodology and agent-architecture inde-
pendent descriptions of macroscopic MAS states are utilizing the generic role and
group concepts. Roles characterize agent activities, i.e. commitments to norma-
tive agent behaviors, and groups provide the context of roles by partitioning MAS
organizations into sets of individuals that share characteristics [13]. An Agent
Causal Behavior Graph (ACBG) is denoted by: ACBG :=< Vacbg, Eacbg >,
where Vacbg is a set of nodes and Eacbg is a set of directed edges between nodes
(Eacbg ⊆ Vacbg × Vacbg). Nodes indicate system variables that denote the num-
ber of agents that exhibit observable behaviors (e.g. cf. [14]). Different types of
nodes and the corresponding variables denote the number of current role acti-
vations (r(x)), the number of active groups (g(x)), the group size (gs(x)) and the
cumulative values of environment properties (e(x)). An additional node type can
be used to join links to a combined interaction rate (r(x)) that expresses con-
tributive influences which jointly cause behavior adjustments of agents. Links
denote positive or negative causal influences that are either direct (e(d+/−)), e.g.
due to inter-agent communication, or mediated (e(m+/−)) by coordination me-
dia, e.g. shared environments [15]. Links between nodes of MAS design elements
(r(x),g(x),gs(x),e(x)) describe causal relations. Therefore, the increases of a node
value enforces that the values of positively connected node values increase in
subsequent time steps. Negative relations enforce changes in opposite directions
[6]. Rate-nodes have only additive / subtractive influences on connected nodes.
Details on the graphical (cf. figure 7) and textual modeling of ACBGs can be
found in [9,10].

3 Systematic Examination of Qualitative MAS Dynamics

Here, we outline a procedure to examine the dynamic properties of agent-based
application designs. Developers abstract design models to describe the conceived
application as a dynamical system and apply simulation tools to examine the
space of possible system behaviors. These tasks supplement established develop-
ment practices (e.g. reviewed in [1]) by an optional development activity, i.e. a
method fragment [16]. This extension enables developers to anticipate the collec-
tive effects of agent models at analysis and design phases in MAS development.

Figure 1 outlines the MAS Coordination Analysis Activity1. This Activity
comprises three phases, namely the (pre-)processing of design models (A), the
construction of an ACBG (cf. section 2; B) and its analysis (C).

3.1 Design Preprocessing

Initially, MAS design models, which are specific to certain methodologies and/or
agent architectures, are abstracted to extract the information that are required
1 Following OMGs Software Process Engineering Meta-Model (SPEM) notation:
http://www.omg.org/technology/documents/formal/spem.htm

www.manaraa.com

Qualitative Modeling of MAS Dynamics 83

Fig. 1. The qualitative examination of MAS Dynamics

to derive ACBGs (cf. figure 1; A). Three types of design models are consid-
ered, namely specifications of the agent(s), of their environment(s) and optional
models of organizational structures. The Agent Behavior Extraction addresses
the derivation of observable agent behaviors, i.e. ACBG nodes, and the Inter-
action Extraction addresses the extraction of the interdependencies between the
agent(s) as well as environment properties. The proposed Activity can be ad-
justed to different modeling formalisms by providing extraction guidelines.

Figure 2 denotes the conceptual models of the extracted data structures. An
Agent Interaction (AI) model (cf. figure 2; left) describes the interdependencies
(Inter-Agent Interaction) of Agent types and Environment elements. Some
methodologies include comparablemodels, e.g. the GAIA acquaintancemodel [17].
Direct, message-based interactions are commonly denoted by modeling tools, e.g.
as Protocols in Prometheus (System Overview Diagrams) [18]. In addition, devel-
opers have to search designs for mutual interactions with environment elements,
as these may indicate mediated agent interdependencies [19].

The construction of an AI model, i.e. the Task Interaction Extraction, is de-
noted in Figure 3 as a stereotyped UML 2 Activity Diagram. In agreement with
[20], Tasks are described as a control flow that governs the execution of Steps. The

Fig. 2. Conceptual models of intermediate models that prepare ACBG construction

www.manaraa.com

84 J. Sudeikat and W. Renz

illustrated processing comprises two principal phases. First, MAS design models
are searched for interacting types of system elements. In two distinct steps the
active (Identify Actors / Agents), i.e. agents and system actors, as well as passive
(Identify Environment Elements) types of system element are identified.

In the second phase, the interactions of the identified elements are extracted.
In parallel, the MAS design is searched for three types of direct interactions
(Identify Direct Interactions:). First, interactions among sets of active system
elements are considered (Agent/Agent). These are signified by message exchanges
that are possibly structured by interaction protocols. Secondly, the interactions
are examined that involve passive system elements (Agent / Environment).
These describe the modification of environment elements as well as the sensing
of these modifications. Finally, the interactions and infleunces between passive
environment elements are considered (Environment/Environment). The inter-
actions that are identified in the latter two steps serve as input to the iden-
tification of mediated interactions (Infer Mediated Interactions: Agent/Agent).
In this step, the mutual acting/sensing activities of agents are related to each
other by infering infomration flws that are manifested by transient modifications
of environment elements. The popagation of modifications is traced to identify
which agents can be affected by the modification of environment elements.

Fig. 3. Procedure to extract the Agent Interaction model

An Agent Behavior Change (ABC) model (cf. figure 2; right) describes the be-
haviors that individual agent types can exhibit and denotes the influences that
cause agents to adjust their local behaviors [21]. The model consists of a set
of Agent representations that comprise a list of observable Behaviors. Behavior
representations denote the causes, i.e. the Interaction Links, that make individ-
ual agents join and leave behaviors. These causes of behavior changes relate
to interactions between agents / environment elements (inter-agent) or inter-
nal events, e.g. goal adoptions or periodic activations (agent-intern). Inter-agent
interactions are identified in the AI models.

Figure 4 summarizes the Task Agent Behavior Extraction that adresses the
construction of an ABC model. The Step Identify Behaviors unambiguously
identifies agent behaviors in agent specifications. Particularly duplicates are
resolved, i.e. behaviors that are denoted in both design models. In [22], this

www.manaraa.com

Qualitative Modeling of MAS Dynamics 85

identification is exemplified for deliberative, goal-directed agents where agent
behaviors can be distinguished by iterating the static tree structure of goals,
(sub-)goals and plan implementations. The level of detail of the behavior iden-
tification controls the granularity of the analysis [22]. The observable behaviors
are identified for each agent and for each behavior the causes to adopt and
drop it are identified (Search Causes). In this respect denote causes the inter-
actions that make agents adjust their behavior. These describe not necessarily
imperatively, reactive responses but also denote the events that make the agent
reasoning to consider adoption/leave of a behavior. These causes are added to
the ABC model (Add Interaction), if not already present.

For the causing interdependencies it is checked whether they solely cause be-
havior adjustments or they contribute (is not contributive), i.e. that interactions
conjointly enforce adjustments (cf. section 2). An example is given in section 4.2,
where the activation of agents requires the availability of inactive agents as well
as environment elements. The conjoint interactions are added for later processing
(Add Contributive Interactions). When all causes are processed, the behavior is
added to the ABC model (Add Behavior). The Task is finished when the set of
behaviors, exhibited by all active system elements, has been processed. Organi-
zational modeling formalisms describe when agents join/leave groups and roles,
e.g. in the Agent-Group-Role (AGR) model AUML sequence diagrams are utilized
for this purpose [23]. These descriptions denote the interactions / perceptions that
cause behavior changes. If an organizational model of the MAS is available [13],
this is also searched as well for agent behaviors, i.e. role and group concepts (cf.
section 2), and the identified influences are processed as described above.

Fig. 4. Procedures to the processing of MAS designs

3.2 Systemic Model Construction

The (pre-)processing of MAS designs leads to intermediate data structures, i.e.
AI and ABC models. These are processed in the Task ACBG Construction (cf.
Figure 5) to derive a the systemic system representation. First, models are pro-
cessed to identify the ACBG nodes and add these to the ACBG model (Add

www.manaraa.com

86 J. Sudeikat and W. Renz

ACBG Nodes (ABCM / AIM)). In this step, agent behaviors, denoted in the
ABC Model are mapped to role activation (r(x)), active groups (g(x)) or group
size (gs(x)) node types (cf. section 2). In addition, environment elements (from
the the AI model) are mapped to ACBG environment property nodes (e(x)).

Then the links are introduced. For each node the corresponding causes (ABC
model) are iterated. If the interaction is not present in the graph, it is intro-
duced (Add ACBG Edge) and connected (Connect Nodes). These links describe
positive (negative) relations when they cause equal (opposite) directed variable
changes, e.g. an increase (decrease) causes agents to adopt connected roles. Links
may also be contributive (isContributive), i.e. combinations of influences cause
changes of behaviors and/or environment elements. Contributive links are joint
by connecting these to a common rate node (r(x)) and connecting the rate to
the target nodes of the interactions (Add Contributives + Join Edges). The con-
tributions of joint interactions is expressed by their individual infleunces on a
global adjustment rate. This rate characterizes how agent interactions infleunce
behavior adjustments. The Task is finished when the set of nodes is processed
and for each node the identified causes have been addedd to the ACBG model.
This procedure does not check whether the introduced graph nodes are linked,
since orphaned nodes / agent types may indicate negligences in the application
design.

Fig. 5. ACBG construction procedure

3.3 Behavior Analysis

The structure of the derived ACBGs highlights the causalities between agent
types and their behaviors. This viewpoint particularly eases the identification of
cyclic causalities which manifest feedback loops. Developers will not only inspect

www.manaraa.com

Qualitative Modeling of MAS Dynamics 87

the model manually (cf. figure 1; Model Inspection), but also animate the system
behavior to visualize the time dependent changes of system variables, e.g. to
answer what-if questions on different parameterizations and initial conditions.

The animation requires that the CLDs (ACBGs, respectively) are manually
transferred to more precise mathematical models and are calibrated to realistic
configurations. Ordinary Differential Equations (ODE) are commonly used to
denote the rates of change of system variables and can be iterated by numerical
computing environments. The formulation of the system as a set of ODE enables
a formal treatment (Mathematical Analysis, cf. figure 1), e.g. the stability analy-
sis of fixed points [24]. An associated modeling formalism is the Stock-and-Flow
Diagram [6]. This modeling approach expresses system variables as stocks and
denote the quantitative in- and out-flow in / from these stocks with mathemat-
ical formulas. Simulation tools to iterate these models are freely available2. In
addition, we found that stochastic simulation tools, e.g. stochastic process alge-
bra [25] as utilized in [26], are appropriate to simulate ACBG models (cf. figure
1: Stochastic Simulation). System variables are represented by numbers of active
processes and their activation / deactivations is controlled by stochastic interac-
tions via interaction channels. The utilization of a Stock-and-Flow Diagrams is
exemplified in section 4 and details on the stochastic simulation of ACBGs can
be found in [27,9].

4 Case Study: Examining Marsworld Dynamics

In the following, the proposed analysis procedure is exemplified by examining the
collective behavior of a comparatively simple MAS. The derivation and analysis
of the qualitative dynamics of these models identifies causal interdependencies
between agent activities and we show the agreement of the anticipated causalities
with MAS simulation results.

4.1 The Marsworld Design

The so-called Marsworld follows a case study given in [28]. The following de-
scription is based on an interpretation of this scenario that is freely available as
an example application of the Jadex agent system.3 The hypothetical Marsworld
setting addresses mining activities on a far distant planet. Teams of autonomous
robots are responsible to explore, mine and transport ore. Sentry agents are
equipped with specific sensors that can verify ore locations. Producer agents are
equipped with mining devices and Transporter agents can carry ore to the home
base. Producers and Transporters are also equipped with inferior sensors that
report locations that may accommodate ore. These locations are communicated
to sentry agents. Sentry agents move to suspicious sites and verify the presence
of ore. When ore has been located a randomly selected Producer agent is called
2 E.g. the System Dynamics module of the Netlogo environment:
http://ccl.northwestern.edu/netlogo/

3 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

www.manaraa.com

88 J. Sudeikat and W. Renz

to mine the ore. When the location has been exhausted a randomly selected
transporter agent is called to move the resource to the home base.

The agent models comprises two behaviors. Agents either search or execute
their designated activity, i.e. sense, produce or transport. Figure 6 (left) denotes
the logical structure of the MAS design and details the Sentry agent type in
the Tropos [29] notation. All agents are equipped with a default behavior to
search for ore. When ore locations are spotted, these are communicated to Sentry
agents that verify ore locations. This activity comprises to move to the suspicious
location, to use the sensors and to request the production of the ore. In a similar
way, Producer and Transporter agents provide their designated activities and
Transporters depend on Producers to communicate requests to transport ore.

Figure 6 (right) describes the activation of Sentry agents (B.1) and Producer
agents (B.2) by AUML sequence diagrams [30]. Any agent type is subject to
the perception of ore locations. This causes the communication of the location
(message: inform location) to sentry agents and causes them to adjust their
behavior, i.e. start the sensing activity. When the sensing activity is finished,
Sentry agents send requests to produce the identified ore to producer agents
(message: request production). This causes Sentry agents to enter the searching
behavior and makes the receiving Producer agent to start production.

Fig. 6. A Tropos Actor (Goal Diagram) that denotes the internal structure of the Sen-
try agent type (left) and (A)UML sequence diagrams (right) of the agent interactions

4.2 Examining the Marsworld Dynamics

The derivation of an ACBG from the outlined MAS design highlights its causal
structure and reveals feedback loops (cf. figure 7). The agent types are each de-
scribed by two role nodes that denote the numbers of activated and searching
agents. The sum of these nodes describes the MAS state. The state of the en-
vironment is given by the numbers of locations that are subject to the activity
of Sentry agents, Producer agents and Transporter agents. When the searching
Producer and Transporter agents encounter unexplored Resources, the number
of Sentry activations increases. Therefore, the search and random encounter of
Resources are contributive interactions (cf. section 2) that influence the rates of

www.manaraa.com

Qualitative Modeling of MAS Dynamics 89

Fig. 7. Systemic Model (ACBG, cf. section 2) of the Marsworld dynamics

sentry activations. Finally, the activity of Transporters is reducing the number
of available Resources (negative link). Therefore, the MAS establishes a balanc-
ing feedback loop that continuously removes Resources from the environment.
The activation of Sentries is influenced by three balancing feedbacks. As the ac-
tivations of sentries increases, the activations of the other agent types increases
as well (positive links). However, these activations of agents limits the number
of searching agents in the system. Thus the activation rates of the Sentries are
decreased as well. The sentry activations increase when less agents are active,
i.e. more agents are occupied with searching the environment.

4.3 Discussion

We compare the derived ACBG (figure 7) with an agent-based Marsworld sim-
ulation4. By enforcing a stationary working regime, e.g. by a fixed input rate of
resources, the interdependencies of agent activities can be observed as correla-
tions of agent activities (cf. figure 8; C, D). The systemic models assume that
agent cardinatlities are above one and ignores possible blocking by serialization
constraints. The correlation of the active sentries with the active producers (cf.
figure 8; C) shows a maximum at a delay time of about 60 time units. Since
the curve is asymmetric, the mean delay time is somewhat longer (about 70).
The same delay time is shown by the correlation of active producers with the
active transporters. This correlation function has a much longer tail, since the
transporters are activated for a longer time and move between ore-source and
the home-base. Consequently, the correlation between active sentries and active
transporters also has a long tail at a delay time being equal to the sum of the
two above mean delay times. (In the figure, the opposite correlation with a neg-
ative time difference is plotted.) The auto-correlation functions (see figure 8; D)
exhibit a symmetric decay with a short auto-correlation time of the active sentry
and producer agents, and a much longer auto-correlation time of the transporters
for the above explained reason. Interestingly enough, sentries have time slots of
negative auto-correlation which show the interaction with the other non-active

4 Using Netlogo: 100x Sentries, Producer, Transporter in a grid of 1225 patches.

www.manaraa.com

90 J. Sudeikat and W. Renz

agent roles. Thus, we have shown that even in a highly fluctuating stationary
working regime, the system dynamics characteristics imposed by ACBG can be
validated using correlation function techniques.

Figure 8 (B) animation of the ACBG that denotes the agent activations as
relative scales. When teams encounter resources, the Sentries are activated (1),
followed by the Producers and Transporters. Inactive agents search the environ-
ment and therefore contribute to the activation of Sentry agents (2). Figure 8
(A) shows this behavior in an agent-based simulation of a bounded environment
that is initialized with a load of ore-sources that are reinforced as a low rate. The
MAS exhibits a comparable system behavior, i.e. resources are foraged and af-
terwards agent activations approach a low steady state that is heavily perturbed
by the spatial distribution of agents and resources. The systemic models partic-
ularly allow to examine specific system configurations (what-if games). Figure 8
(E, F) denote simulations of a MAS configuration, where the number of available
Producers limits the system operation due to the possible activations of Trans-
porters are limited as well. Therefore, agent activations approach steady states.
This indicates the dependence of the effectivity of the MAS on the quantities of
agents and the need for their adaptive allocation.

Fig. 8. Comparing System Dynamic and agent-based simulation models

5 Related Work

Refinements of causality graphs have been proposed to understand the intra-
agent and inter-agent activities of MAS implementations. These approaches
monitor agent execution and causally relate the observed events, e.g. in [31]
to check agent interactions. In [32], graph structures denote the causal relations
among agent concepts, e.g. that the reception of a message modifies a belief
value. The generation of these graphs structures, by the monitoring of agents,
faciltiates the comparison of the expectations on the agent execution with the
actual behavior of system elements. These approaches focus on the microscopic
behavior of individual agents while we are here addressing the macroscopic be-
havior that rises from collectives.

www.manaraa.com

Qualitative Modeling of MAS Dynamics 91

Mathematical modeling (e.g. [14]) and macroscopic system simulation (e.g.
[26]) have been proposed to examine the dynamic properties, e.g. oscillations
and fixed points, in MAS. In [14], reactive agents as well as environments are
understood as stochastic processes that can be described by differential equa-
tions. This approach particularly addresses homogeneous MAS and the derived
models are equivalent to the mathematical concretions that animate ACBG dy-
namics (cf. section 3.3). In [26], the collective behavior of agents is examined by
translating them to stochastic simulation models, i.e. stochastic process algebra.

Here, we advocate the extraction and examination of the systemic structure
of MAS prior to system simulations or mathematical iterations. The proposed
modeling level utilizes System Dynamics concepts and the resulting models do
not only expose collaborative effects but also facilitate their explanation. The
observation of collaborative effects by model simulations/iterations requires pa-
rameter sweeps and the manual search for appropriate model calibrations is
facilitated by insights in the causal structure that enable debelopers to infer the
observable effects that can be expected.

6 Conclusions

In this paper, we argued that the systematic development of agent-based software
systems has to plan for the collective effects that can rise from agent coaction.
A systemic modeling level has been outlined that supplements current develop-
ment practices with the ability to anticipate qualitative dynamic properties, i.e.
oscillations and fixed points, which MAS architectures may exhibit. The system-
atic derivation and analysis of these models has been discussed and exemplified.
Future work concerns the (semi-)automation of the presented procedure to anal-
yse MAS designs. Systemic modeling was initially proposed to assist the design
[8] and construction of self-organizing phenomena [11]. Therefore, it will be ex-
amined as well whether other approaches to design complex MAS behaviors,
e.g. based on the AMAS theory [33], may benefit from this technique. In addi-
tion, the integration in established development processes will be examined in
more detail. Besides the here presented analytic usage of systemic models, their
constructive usage, e.g. to configure and enact externalized models of decentral
coordination strategies, has been considered [10] and will be further developed.

Acknowledgment

One of us (J.S.) would like to thank the Distributed Systems and Information
Systems (VSIS) group at Hamburg University, particularly Winfried Lamersdorf,
Lars Braubach and Alexander Pokahr for discussion and encouragement.

References

1. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-oriented Methodologies. Idea
Group Publishing, USA (2005) ISBN: 1591405815

2. Anderson, P.: More is different. Science 177, 393–396 (1972)

www.manaraa.com

92 J. Sudeikat and W. Renz

3. Mogul, J.C.: Emergent (mis)behavior vs. complex software systems. Technical Re-
port HPL-2006-2, HP Laboratories Palo Alto (2005)

4. Odell, J.: Agents and complex systems. Journal of Object Tech. 1, 35–45 (2002)
5. Parunak, H.V.D., Brueckner, S., Savit, R.: Universality in multi-agent systems. In:

AAMAS 2004: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 930–937. IEEE Computer Society,
Los Alamitos (2004)

6. Sterman, J.D.: Business Dynamics - Systems Thinking and Modeling for a Complex
World. McGraw-Hill, New York (2000)

7. Van Dyke Parunak, H., Savit, R., Riolo, R.L.: Agent-based modeling vs. Equation-
based modeling: A case study and users’ guide. In: Sichman, J.S., Conte, R.,
Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 10–25. Springer,
Heidelberg (1998)

8. Sudeikat, J., Renz, W.: On expressing and validating requirements for the adap-
tivity of self-organizing multi-agent systems. Sys. and Inf. Sci. N. 2, 14–19 (2007)

9. Renz, W., Sudeikat, J.: Modeling feedback within mas: A systemic approach to
organizational dynamics. In: Proceedings of the International Workshop on Or-
ganised Adaptation in Multi–Agent Systems (2008)

10. Sudeikat, J., Renz, W.: MASDynamics: Toward systemic modeling of decentralized
agent coordination. In: Proceedings of KIVS 2009 (2009)

11. Sudeikat, J., Renz, W.: Programming adaptivity by complementing agent func-
tion with agent coordination: A systemic programming model and development
methodology integration. In: Proc. of the 5th Int. Conf. on Self-organization and
Adaptation of Computing and Communications, SACC 2009 (2009)

12. Richardson, G.P.: Problems with causal-loop diagrams. Sys. Dyn. Rev. 2, 158–170
(1986)

13. Mao, X., Yu, E.: Organizational and social concepts in agent oriented software
engineering. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 1–15. Springer, Heidelberg (2005)

14. Lerman, K., Galstyan, A.: Automatically modeling group behavior of simple agents.
In: Agent Modeling Workshop, AAMAS 2004, New York, NY (2004)

15. Gouaich, A., Michel, F.: Towards a unified view of the environment(s) within multi-
agent systems. Informatica (Slovenia) 29, 423–432 (2005)

16. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. Int. J. Agent-Oriented
Software Engineering 1, 91–121 (2007)

17. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the
gaia methodology. ACM Trans. on Software Eng. and Meth. 12, 317–370 (2003)

18. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. John Wiley and Sons, Chichester (2004) ISBN 0-470-86120-7

19. Weyns, D., Brueckner, S.A., Demazeau, Y. (eds.): EEMMAS 2007. LNCS (LNAI),
vol. 5049. Springer, Heidelberg (2008)

20. Object Management Group: Software & systems process engineering meta-model
specification version 2.0, formal/2008-04-01 (2008),
http://www.omg.org/spec/SPEM/2.0/PDF

21. Odell, J., van Dyke Parunak, H., Brueckner, S., Sauter, J.: Changing roles: Dynamic
role assignment. Jounal of Object Technology 2, 77–86 (2003)

22. Sudeikat, J., Renz, W.: Monitoring group behavior in goal–directed agents using
co–efficient plan observation. In: Padgham, L., Zambonelli, F. (eds.) AOSE VII /
AOSE 2006. LNCS, vol. 4405, pp. 174–189. Springer, Heidelberg (2007)

http://www.omg.org/spec/SPEM/2.0/PDF

www.manaraa.com

Qualitative Modeling of MAS Dynamics 93

23. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

24. Kaplan, D., Glass, L.: Understanding Nonlinear Dynamics. Springer, Heidelberg
(1995)

25. Priami, C.: Stochastic π–calculus. Computer Journal 6, 578–589 (1995)
26. Gardelli, L., Viroli, M., Omicini, A.: On the role of simulations in engineering

self-organising MAS: The case of an intrusion detection system in tuCSoN. In:
Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA
2005. LNCS (LNAI), vol. 3910, pp. 153–166. Springer, Heidelberg (2006)

27. Sudeikat, J., Renz, W.: On simulations in mas development. In: Braun, T., Carle,
G., Stiller, B. (eds.) KIVS 2007 Kommunikation in Verteilten Systemen – Indus-
triebeitrge, Kurzbeitrge und Workshops. VDE-Verlag (2007)

28. Ferber, J.: Multi-Agent Systems. Addison-Wesley, Reading (1999)
29. Giorgini, P., Kolp, M., Castro, J.M.J.: Tropos: A Requirements-Driven Method-

ology for Agent-Oriented Software. In: Agent-Oriented Methodologies, pp. 20–45.
IDEA Group Publishing, USA (2005)

30. Odell, J., Parunak, H.V.D., Bauer, B.: Extending uml for agents. In: Proc. of the
Agent-Oriented Information Systems Workshop at the 17th National Conference
on Artificial Intelligence, pp. 3–17 (2000)

31. Vigueras, G., Botia, J.A.: Tracking causality by visualization of multi-agent in-
teractions using causality graphs. In: Dastani, M.M., El Fallah Seghrouchni,
A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908,
pp. 190–204. Springer, Heidelberg (2008)

32. Lam, D.N., Barber, K.S.: Comprehending agent software. In: Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 586–593. ACM Press, New York (2005)

33. Capera, D., George, J.P., Gleizes, M.P., Glize, P.: The amas theory for com-
plex problem solving based on self-organizing cooperative agents. In: Enabling
Technologies: Infrastructure for Collaborative Enterprises, WET ICE 2003,
pp. 383–388 (2003)

www.manaraa.com

Part III

Development Method Proposals

www.manaraa.com

Methodology for Engineering Affective Social
Applications

Derek J. Sollenberger and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

{djsollen,singh}@ncsu.edu

Abstract. Affective applications are becoming increasingly mainstream in en-
tertainment and education. Yet, current techniques for building such applications
are limited, and the maintenance and use of affect is in essence handcrafted in
each application. The Koko architecture describes middleware that reduces the
burden of incorporating affect into applications, thereby enabling developers to
concentrate on the functional and creative aspects of their applications. Further,
Koko includes a methodology for creating affective social applications, called
Koko-ASM. Specifically, it incorporates expressive communicative acts, and uses
them to guide the design of an affective social application. With respect to agent-
oriented software engineering, Koko contributes a methodology that incorporates
expressives. The inclusion of expressives, which are largely ignored in conven-
tional approaches, expands the scope of AOSE to affective applications.

1 Introduction

Representing and reasoning about affect is essential for producing believable charac-
ters and empathic interactions with users, both of which are necessary for effective
agent based entertainment and education applications. Leading applications of inter-
est include pedagogical tools [4,9], military training simulations [6], and educational
games [10].

As evidenced by the above applications, incorporating affect into applications is an
active area of research. The primary focus of the existing research has been modeling
the affective state of a single agent. Our work builds on that foundation but goes further
by incorporating affective computing with multiagent systems (MAS). By focusing our
attention on the communication of affect between agents, we can develop a new class of
applications that are both social and affective. To achieve the fusion of affect with MAS,
two challenges must be overcome. First, we need a medium through which agents can
exchange affective data. Second, we must define a methodology for creating affective
social applications via that medium.

The first challenge is addressed by using Koko [14], a middleware that facilitates the
sharing of affective data. Koko is a multiagent middleware whose agents manage the
affective state of a user. Further, Koko is intended to be used by applications that seek
to recognize emotion in human users. Although it is possible to use Koko in systems

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 97–109, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

98 D.J. Sollenberger and M.P. Singh

that model emotion in virtual characters, many of its benefits most naturally apply when
human users are involved.

Importantly, Koko enables the development of affective social applications by intro-
ducing the notion of expressive communicative acts into agent-oriented software en-
gineering (AOSE). Using the multiagent environment provided by Koko, agents are
able to communicate affective information through the exchange of expressive mes-
sages. The communication of affective information is naturally represented as an ex-
pressive communicative act, as defined by Searle [12]. However, expressive acts are
a novelty in both AOSE and virtual agent systems, which have traditionally focused
on the assertive, directive, and commissive communicative acts (e.g., the FIPA inform
command). Further, Koko enables us to create a methodology for engineering affective,
social applications.

Contributions. This paper describes a methodology, Koko-ASM, centered on expres-
sive communicative acts, the first such methodology to our knowledge. Using this
methodology application developers can construct applications that are both social and
affective. As such, the combination of the Koko middleware and this methodology en-
able AOSE to expand into the design and creation of affective social applications.

Paper Organization. The remainder of this paper is arranged as follows. Section 2
reviews appraisal theory affect models. Section 3 provides an overview of the Koko
middleware. Section 4 describes the Koko-ASM methodology. Section 5 demonstrates
its merits via a case study.

2 Background

This section provides a synopsis of two areas that are fundamental to Koko-ASM: (1)
appraisal theory as a foundation for modeling affect and (2) communicative acts and
their relevance to AOSE.

2.1 Appraisal Theory

Smith and Lazarus’ [13] cognitive-motivational-emotive model, the baseline for cur-
rent appraisal models (see Fig. 1), conceptualizes emotion in two stages: appraisal and
coping. Appraisal refers to how an individual interprets or relates to the surrounding
physical and social environment. An appraisal occurs whenever an event changes the
environment as interpreted by the individual. The appraisal evaluates the change with
respect to the individual’s goals, resulting in changes to the individual’s emotional state
as well as physiological responses to the event. Coping is the consequent action of the
individual to reconcile and maintain the environment based on past tendencies, current
emotions, desired emotions, and physiological responses [8].

A situational construal combines the environment (facts about the world) and the
internal state of the user (goals and beliefs) and produces the user’s perception of the
world, which then drives the appraisal and provides an appraisal outcome. This ap-
praisal outcome is made up of multiple facets, but the central facet is Affect or current
emotions. For practical purposes, Affect can be interpreted as a set of discrete states
with an associated intensity. For instance, the result of an appraisal could be that you
are simultaneously happy (at an intensity of α) as well as proud (at an intensity of β).

www.manaraa.com

Methodology for Engineering Affective Social Applications 99

Environment
Goals/Beliefs/

Intentions

Coping Outcome

Appraisal Outcome

Physiological
Response Affect

Action
Tendencies

Appraisal

Coping

Emotion-Focused
Strategies

Problem-Focused
Strategies

Appraisal Outcome

Affect

Appraisal

Situational
Construal

Fig. 1. Appraisal theory diagram [13]

2.2 Communicative Acts

The philosophers Austin [1] and Searle [12] developed speech act theory founded on
the principle that communication is a form of action. In other words, when an agent
communicates, it alters the state of the world. Communicative acts are grouped based
on their effects on the agent’s internal state or social relationships. Specifically, assertive
acts are intended to inform, directive acts are used to make requests, and expressive acts
allow agents to convey emotion.

Existing agent communication languages and methodologies disregard expressives.
AOSE methodologies specify messages at a high level and therefore are not granular
enough extract the meaning of the messages [2]. On the other hand, agent communica-
tion languages specify messages at the appropriate level of detail, but omit expressives.
Instead, they have focused on other communicative acts, such as assertives and direc-
tives, which can be can be readily incorporated into traditional agent BDI frameworks
[15].

3 Koko

Koko’s purpose is twofold. It serves as both an affect model container and an agent
communication middleware [14]. The affect models that Koko maintains focus on a
section of the appraisal theory process (denoted by the dashed box in Fig. 1) in which
the models absorb information about the agent’s environment and produce an approxi-
mation of the agent’s affective state. Koko then enables that affective information to be
shared among agents via expressive messages. It is important to note that since Koko
is designed to model human users, the environment of the agent extends into the phys-
ical world. To better report on that environment, Koko supports input from a variety of
physical sensors (e.g., GPS devices).

www.manaraa.com

100 D.J. Sollenberger and M.P. Singh

Koko

User Agent

Application

Developer Interface Vocabulary

Affect Model
Container Mood Model

External
Sensors

Fig. 2. Koko basic architectural overview

Koko promotes the sharing of affective information at two levels: cross-user or in-
teragent communication and cross-application or intraagent. For a social (multi-agent)
application, Koko enables agents to communicate via expressives. Expressives enable
agents to share their current affective state among other agents within Koko (the for-
mat of an expressive message is outlined in Section 4). Koko also provides a basis for
applications—even those authored by different developers—to share information about
a common user. This is simply not possible with current techniques because each ap-
plication is independent and thereby unaware of other applications being employed by
a user.

Fig. 2 shows Koko’s basic architecture using arrows to represent data flow. The fol-
lowing sections summarize a few of Koko’s key components.

User Agent. Koko hosts an active computational entity or agent for each user. In par-
ticular, there is one agent per user – the same user may employ multiple Koko-based
applications. Each agent has access to global resources such as sensors and messaging
but operates autonomously with respect to other agents.

Affect Model Container. This container manages one or more affect models for each
user agent. Each application must specify exactly one affect model, which is instantiated
for each user of the application. The container then manages that instance for the user
agent. As Fig. 3 shows, an application’s affect model is specified in terms of the affective

1User Agent1 App

Affect
Model

Application
Events

Sensor
Events

Affective
States

1

1

*1

Mood
Model

1

1

Fig. 3. Main Koko entities

www.manaraa.com

Methodology for Engineering Affective Social Applications 101

states as well as application and sensor events, which are defined in the application’s
configuration (described in Section 4) at runtime.

Koko follows CARE’s [10] supervised machine learning approach for modeling af-
fect by populating predictive data structures with affective knowledge. This enables
Koko to support affect models that depend on an application’s domain-specific details,
while allowing Koko as a whole to maintain a domain-independent architecture.

For each affect model, the container takes input from the user’s physical and appli-
cation environment and produces an affect vector. The resulting affect vector contains
a set of elements, where each element corresponds to an affective state. The affective
state is selected from the emotion ontology that is defined and maintained via the devel-
oper interface vocabulary. Using this ontology, each application developer selects the
emotions to be modeled for their particular application. For each selected emotion, the
vector includes a quantitative measurement of the emotion’s intensity. The intensity is
a real number ranging from 0 (no emotion) to 10 (extreme emotion).

Mood Model. Following EMA [7], we take an emotion as the outcome of one or more
specific events and a mood as a longer lasting aggregation of the emotions for a spe-
cific user. An agent’s mood model maintains the user’s mood across all applications
registered to that user.

For simplicity, Koko’s model for mood takes in affect vectors and produces a mood
vector, which includes an entry for each emotion that Koko is modeling for that user.
Each entry represents the aggregate intensity of the emotion from all affect models asso-
ciated with that user. Consequently, if Koko is modeling more than one application for a
given user, the user’s mood is a cross-application measurement of the user’s emotional
state.

Developer Interface Vocabulary. Koko provides a vocabulary through which the ap-
plication interacts with Koko. The vocabulary consists of two ontologies, one for de-
scribing affective states and another for describing the environment. The ontologies are
encoded in OWL (Web Ontology Language). If needed, the ontologies are designed to
grow to meet the needs of new applications.

The emotion ontology describes the structure of an affective state and provides a set
of affective states that adhere to that structure. Koko’s emotion ontology captures the
24 emotional states proposed by Elliot [3], including states such as joy, hope, fear, and
disappointment.

The event ontology can be conceptualized in two parts: event definitions and events.
An event definition is used by applications and sensors to inform Koko of the type of
data that they will be sending. The event definition is constructed by selecting terms
from the ontology that apply to the application, resulting in a potentially unique subset
of the original ontology. Using the definition as a template, an application or sensor
generates an event that conforms to the definition. This event then represents the state
of the application at a given moment. When the event arrives at the affect model, it is
decomposed using the agreed upon event definition.

Koko comes preloaded with an event ontology (partially shown in Fig. 4) that sup-
ports common contextual elements such as time, location, and interaction with applica-
tion objects. Consider an example of a user seeing a snake. To describe this for Koko

www.manaraa.com

102 D.J. Sollenberger and M.P. Singh

Event
Context

Action Agent

Object

PerformedBy

Involves

OccursIn

TypeOf

name
value
time spent

Location

Includes

name
value
completed
start time
end time
energy used
time remaining

Task

Fig. 4. Event ontology example

you would create an event seeing, which involves an object snake. The context is often
extremely important. For example, the user’s emotional response could be quite dif-
ferent depending on whether the location was in a zoo or the user’s home. Therefore,
the application developer should identify and describe the appropriate events (including
objects) and context (here, the user’s location).

Runtime API. The runtime API is the interface through which applications commu-
nicate with Koko at runtime. The API can be broken into two discrete units, namely,
event processing and querying. Before we look at each unit individually, it is important
to note that the contents of the described events and affect vectors are dependent on the
application’s initial configuration, which Section 4 discusses.

Application Event Processing. The express purpose of the application-event interface
is to provide Koko with information regarding the application’s environment. During
configuration, a developer defines the application’s environment via the event ontology
specified in the developer interface. Using the ontology, the developer encodes snap-
shots of the application’s environment. At runtime the snapshots capturing the user’s
view of the application environment are passed into Koko for processing. Upon receipt,
Koko stores each event where it is available for retrieval by the appropriate affect model.
This data combined with the additional data provided by external sensors provides the
affect model with a complete picture of the user’s environment.

Application Queries. Applications query for and retrieve two types of vectors from
Koko. The first is an application-specific affect vector and the second is a user-specific
mood vector, both of which are modeled using the developer interface’s emotion on-
tology. The difference between the two vectors is that the entries in the affect vector
depend upon the set of emotions chosen by the application when it is configured,
whereas the mood vector’s entries aggregate all emotions modeled for a particular user.
As such, a user’s mood is relevant across all applications. Suppose a user, Alice, reads
an email that makes her angry and the email client’s affect model recognizes this. All
of Alice’s affect enabled applications can benefit from the knowledge that the user is

www.manaraa.com

Methodology for Engineering Affective Social Applications 103

angry even if they cannot infer that it is from some email. Such mood sharing is natural
via Koko because Koko maintains the user’s mood and can supply it to any application.

4 Methodology

Now that we have laid the architectural foundation we describe Koko-ASM, a method-
ology for configuring a social (multiagent) affective application using Koko. Properly
configuring an application is key because its inputs and outputs are vital to all of the
application interfaces within Koko. In order to perform the configuration, the developer
must gather key pieces of information that are required by Koko. Table 1 systemati-
cally lists Koko-ASM’s steps to create an affective social application. The following
documentation concentrates on Steps 1-4, which are of primary interest to AOSE.

Table 1. Koko-ASM: a methodology for creating an affective, social application

Step Description Artifacts Produced

1 Define the set of possible roles an agent may assume Agent Roles
2 Describe the expressives exchanged between roles Expressive Messages
3 Derive the emotions to be modeled from the expressives Emotions
4 Describe the set of possible application events Application Events
5 Select the sensors to be included in the model Sensor Identifier(s)
6 Select the desired affect model Model Identifier

Step 1 requires the developer to identify the set of roles an agent may assume in the
desired application. Possible roles include TEACHER, STUDENT, PARENT, CHILD, and
COWORKER. A single agent can assume multiple roles and a role can be restricted to
apply to the agent only if certain criteria are met. For example, the role of COWORKER

may only apply if the two agents communicating work for the same company.
Step 2 requires the developer to describe the expressive messages or expressives ex-

changed between various roles [12]. Searle defines expressives as communicative acts
that enable a speaker to express his or her attitudes and emotions towards a proposition.
Examples include statements like “Congratulations on winning the prize!” where the
attitude and emotion is congratulatory and the proposition is winning the prize. For-
mally, we define the structure of an expressive to match that of a communicative act in
general:

〈sender, receiver, type, proposition〉 (1)

The type of the expressive refers to the attitude and emotion of the expressive and the
proposition to its content, including the relevant events. The sender and receiver are
selected from the set of roles defined in Step 1. The developer then formulates the
expressives that can be exchanged among agents assuming those roles. The result is the
set of all valid expressive messages allowed by the application.

Step 3 requires the developer to select a set of emotions to be modeled from the
emotion ontology. The selected emotions are based on the expressives identified in the

www.manaraa.com

104 D.J. Sollenberger and M.P. Singh

previous step. To compute the set of emotions, we evaluate each expressive and select
the most relevant emotions from the ontology for that particular expressive. We add the
selected emotions to the set of emotions required by the application. This process is
repeated for every expressive and the resulting emotion set is the output of this step.

Koko offers support for expressives by providing a well-delineated representation
for affect. Koko can thus exploit a natural match between expressives and affect to help
designers operationalize the expressives they employ in their applications. Our recom-
mended approach to selecting an emotion is to structure Elliot’s set of emotions as a
tree (Fig. 5). Each leaf of the tree represents two emotions, one that carries a positive
connotation and the other a negative connotation. Given an expressive, you start at the
top of the tree and using its type and proposition you filter down through the appropriate
branches until you are left with only the applicable emotions. For example, say that you
have a message with a type of excited and a proposition equal to “I won the game.”
Now using the tree you determine that winning the game is an action the user would
have taken and that excited has a positive connotation, so the applicable emotion must
therefore be pride. In general, the sender and receiver would have different interpreta-
tions. For example, if the recipient of the above message is the agent who lost the game,
then the emotions that are relevant to the recipient would be admiration and reproach
depending on their perception of the winner.

Expressive
Message

Self Others

Events Actions Objects

Attraction
+ like

- dislike

Well-Being
+ joy

- distress

Prospects
+ hope
- fear

Hope Confirmed
+ satisfaction

- dissapointment

Fear Confirmed
+ relief

- fear-confirmed

Self
+ pride
- shame

Others
+ admiration
- reproach

Desirable
+ happy-for
- resentment

Undesirable
+ pity

- gloating

Fig. 5. Expressive message hierarchy

If the proposition of the expressive message is composite or even ambiguous as to
whether or not the type applies to an event, action, or object, then more than one path
of the tree may apply. Such is the case when an agent conveys its user’s mood via
an expressive message. Mood is an aggregation of emotions and therefore does not
have a unique causal attribution. For example, an expressive might convey that a user
is generally happy or sad without being happy or sad at something. Therefore, we do
not select any specific emotion when evaluating a expressive pertaining to mood as the

www.manaraa.com

Methodology for Engineering Affective Social Applications 105

emotions that comprise the mood are captured when evaluating the other expressives.
In other words, mood is not treated directly upon the reception of an expressive.

Step 4 requires the developer to describe the application events using the event ontol-
ogy. The events described are a combination of the expressives in Step 2 and additional
details about the application environment. An expressive is modeled as two application
events, one for sending and another for receipt. Each event is modeled as an action
(see Fig. 4) in which the sending of a message is described as an action performed by
the sender that involves the receiver with the expressive in the context. Similarly, one
can envision the receipt of the message as an action performed by the recipient that
involves the sender. The decomposition of a message into two events is essential be-
cause we cannot make the assumption that the receiving agent will read the message
immediately following its receipt and we must accommodate for its autonomy.

The additional details about the application’s environment are also modeled using
the event ontology. The developer can encode the entire application state using the on-
tology, but this may not be practical for large applications. Therefore, the developer
must select the details about the application’s environment that are relevant to the emo-
tions they are attempting to model. For example, the time the user has spent on a current
task will most likely effect their emotional status, whereas the time until the applica-
tion needs to garbage collect its data structures is likely irrelevant. The resulting events
are combined with the events derived from the expressive messages to form the set of
application events that are needed by Koko.

Step 5 and Step 6 both have trivial explanations. Koko maintains a listing of both the
available sensors and affect models, which are accessible by their unique identifiers.
The developer must simply select the appropriate sensor and affect model identifiers.

Based on the artifacts generated by the above methodology we now have sufficient
information to configure the Koko middleware. Upon configuration Koko supports af-
fective interactions among agents (using the expressive messages) as well as enables
applications to query for the affective state of an agent.

5 Evaluation

Using expressives to communicate an agent’s affective state extends traditional AOSE
into the world of affective applications. We evaluate Koko-ASM by conducting a case
study that steps through the methodology and produces a functional affective social
application. The subject of our case study is a social, physical health application with
affective capabilities, called booST. To operate, booST requires a mobile phone running
Google’s Android mobile operating system that is equipped with a GPS sensor.

The purpose of booST is to promote positive physical behavior in young adults by
enhancing a social network with affective capabilities and interactive activities. As such,
booST utilizes the Google OpenSocial platform [11] to provide support for typical so-
cial functions such as maintaining a profile, managing a social circle, and sending and
receiving messages. Where booST departs from traditional social applications is in its
communication and display of its user’s energy levels and emotional status.

Each user is assigned an energy level that is computed using simple heuristics from
data retrieved from the GPS sensor on board the phone. Additionally, each user is as-
signed an emotional status generated from the affect vectors retrieved from Koko. The

www.manaraa.com

106 D.J. Sollenberger and M.P. Singh

Fig. 6. booST buddy list and activities screenshots

emotional status is represented as a real number ranging from 1 (sad) to 10 (happy). A
user’s energy level and emotional status are made available to both the user and mem-
bers of the user’s social circle.

To promote positive physical behavior, booST supports interactive physical activities
among the members of a user’s social circle. The activities are classified as either com-
petitive or cooperative. Both types of activities use heuristics based on the GPS sensor
readings to determine the user’s progress toward achieving the activities goal. The dif-
ference between a competitive activity and a cooperative activity is that in a competitive
activity the first user to reach the goal is the winner, whereas in a cooperative activity
both parties must reach the goal in order for them to win.

As described in Section 3, Koko hosts an agent for each booST user. A user’s agent
maintains the affect model that is used to generate the user’s emotional status. Further,
booST provides the agent with data about its environment, which in this case incorpo-
rates the user’s social interactions and his or her participation in the booST activities.
The user agent processes the data and returns the appropriate emotional status. Further,
Koko enables the exchange of affective state between booST agents (representing a so-
cial circle of users). This interaction can been seen in Figure 6 in the emoticons next to
the name of a buddy. The affective data shared among the members of a social circle
provides additional information to the affect model. For instance, if all the members of
a user’s social circle are sad then their state will have an effect on the user’s emotional
status.

5.1 Configuring booST

Table 1 outlines Koko-ASM’s process for creating an affective, social application. We
now demonstrate this process using booST.

Step 1 requires that we identify the set of roles an agent may assume. The booST
application involves only two roles, FRIEND and SELF. An agent A assumes the role of

www.manaraa.com

Methodology for Engineering Affective Social Applications 107

agent B’s FRIEND if and only if the users represented by agents A and B are members of
each others social circle. The social circle is maintained by booST and can be equated
to the friend list in popular social applications such as Facebook and MySpace.

Step 2 requires that we identify and describe all expressives that occur between the
two roles. Below is an example of what a few such messages would look like depending
on the outcome of a competitive activity within booST. The remaining messages would
be defined in a similar fashion.

〈SELF, FRIEND, happy, “I won the game”〉 (2)

〈FRIEND, SELF, sad, “I lost the game”〉 (3)

〈FRIEND, SELF, happy, “I ran a good race”〉 (4)

Step 3 requires that we select a set of emotions to model from the emotion ontology. As
Section 3 shows, the ontology is based on Elliot’s expansion of the OCC model, which
categorizes emotions based on the user’s reaction to an action, event, or object. When
inspecting each expressive, we find that booST focuses on measuring happiness and
sadness of the user with respect to actions and events. Therefore, we can narrow our
selection to only emotions that meet those criteria. As a result, we select four emotions:
two are focused on the actions of the user (pride and shame) and two on the events
(joy and distress). The booST application uses these emotions to compute the user’s
emotional status by correlating (1) pride and joy with happiness and (2) shame and
distress with sadness.

Step 4 requires that we describe the application events using the event ontology. Each
expressive message yields two events: a sending event and a receiving event. The re-
maining events provide additional details about the application’s environment (Table 2
shows some examples). Since an event in booST is merely an instantiation of the event
ontology, the event descriptions are trivial. For example, the “Competitive Exercise
Challenge” message can be described as an action that involves another agent. When
an event occurs at runtime, the context associated with its occurrence would specify
attributes such as the time of day, challenge information, and the user’s energy level as
calculated by the application.

Step 5 requires that we select the sensors to be included in the model. As we have
already noted booST requires a single sensor: a GPS. The first time a sensor is used a
plugin must be created and registered with Koko. The GPS plugin converts latitude and
longitude vectors into distance covered over a specified time period. This data is then

Table 2. Representative booST events

Event Description

1 View my energy level and emotional state
2 View my friend’s energy level and emotional state
3 Send or receive “Cooperative Exercise Challenge” message
4 Send or receive “Competitive Exercise Challenge” message
5 Complete or fail a cooperative activity
6 Complete or fail a competitive activity

www.manaraa.com

108 D.J. Sollenberger and M.P. Singh

maintained by Koko and made available for consumption both by the application and
the affect model.

Step 6 is trivial as booST employs an affect model that is provided by Koko. In
particular, booST employs the model that implements decision trees as its underlying
data structure.

Using the artifacts generated by the methodology we now have obtained sufficient
information to configure the Koko middleware. Upon configuration, Koko maintains an
agent for each booST user. The agent is responsible for modeling the affective state
of the user as well as communicating that state to other agents within the user’s social
circle. With Koko supporting the affective aspects of booST, application developers
are free to focus on other aspects of the application. For instance, they may focus on
developing the creative aspects of the game, such as how to alter gameplay based on the
user’s affective state.

6 Discussion

An important contribution of Koko and Koko-ASM is the incorporation of expressive
communicative acts. These acts, though well-known in the philosophy of language,
are a novelty both in agent-oriented software engineering and in virtual agent systems.
The incorporation of expressives enable agents to interpret the difference between an
expression of feelings and a statement of fact, thus enabling agents to better model their
users and their environment.

Existing Methodologies. Existing AOSE methodologies specify messages at a level that
does not describe the contents of the message and therefore are not granular enough to
support expressives [2]. Koko-ASM is restricted to applications that are both affective
and social, thus its applicability has a much narrower scope than existing methodolo-
gies. These distinctions are simply the result of a difference in focus. It is quite pos-
sible, given the narrow scope of Koko-ASM, that it could be integrated with broader
methodologies in order to leverage their existing processes and tools. For example,
many methodologies [2,16] have detailed processes by which they help developers iden-
tify all possible messages that are exchanged among agents. Koko-ASM would bene-
fit by integrating those processes, thereby making it easier to identify the expressive
messages.

Virtual Agents. Koko and, in particular, Koko-ASM have focused on human-to-human
social interactions. This does not inherently limit the methodology only to such inter-
actions. We have begun to explore the application of our methodology on human-to-
virtual agent interactions. Using this modified version of Koko-ASM we envision a
scenario where the virtual agents will have access to the user’s affective state via Koko.
Applications that leverage this technique could manipulate a virtual agent’s interactions
with a user, based on the user’s affective state.

Enhanced Social Networking. Human interactions rely upon social intelligence [5].
Social intelligence keys not only on words written or spoken, but also on emotional
cues provided by the sender. Koko provides a means to build social applications that
can naturally convey such emotional cues, which existing online social networking tools

www.manaraa.com

Methodology for Engineering Affective Social Applications 109

mostly disregard. For example, an advanced version of booST could use affective data
to create an avatar of the sender and have that avatar exhibit emotions consistent with
the sender’s affective state.

Future Work. Koko and Koko-ASM open up promising areas for future research. As an
architecture, it is important that Koko fits in with existing architectures such as game
engines. We have described some efforts in a companion paper [14]. Association with
other architectures would not only facilitate additional applications but would lead to
refinements of the present methodology, which we defer to future research. Further,
we are actively working on formalizing the notion of expressive communication with
respect to agent communication languages.

References

1. Austin, J.L.: How to Do Things with Words. Oxford University Press, London (1962)
2. Deloach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering. Journal of

Software Engineering and Knowledge Engineering 11(3), 231–258 (2001)
3. Elliott, C.: The Affective Reasoner: A Process Model of Emotions in a Multi-agent System.

PhD, Northwestern University (1992)
4. Elliott, C., Rickel, J., Lester, J.C.: Lifelike pedagogical agents and affective computing: An

exploratory synthesis. In: Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence To-
day. LNCS (LNAI), vol. 1600, pp. 195–211. Springer, Heidelberg (1999)

5. Goleman, D.: Social Intelligence: The New Science of Human Relationships. Bantam Books,
New York (2006)

6. Gratch, J., Marsella, S.: Fight the way you train: The role and limits of emotions in training
for combat. Brown Journal of World Affairs X(1), 63–76 (Summer/Fall 2003)

7. Gratch, J., Marsella, S.: A domain-independent framework for modeling emotion. Journal of
Cognitive Systems Research 5(4), 269–306 (2004)

8. Lazarus, R.S.: Emotion and Adaptation. Oxford University Press, New York (1991)
9. Marsella, S., Johnson, W.L., LaBore, C.: Interactive pedagogical drama. In: International

Conference on Autonomous Agents, pp. 301–308 (2000)
10. McQuiggan, S., Lester, J.: Modeling and evaluating empathy in embodied companion agents.

International Journal of Human-Computer Studies 65(4) (April 2007)
11. OpenSocial Foundation. Opensocial APIs (2009), http://www.opensocial.org
12. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University

Press, Cambridge (1970)
13. Smith, C., Lazarus, R.: Emotion and adaptation. In: Pervin, L.A., John, O.P. (eds.) Handbook

of Personality: Theory and Research, pp. 609–637. Guilford Press, New York (1990)
14. Sollenberger, D.J., Singh, M.P.: Architecture for Affective Social Games. In: Dignum, F.,

Bradshaw, J., Silverman, B., van Doesburg, W. (eds.) Agents for Games and Simulations.
LNCS (LNAI), vol. 5920, pp. 79–94. Springer, Heidelberg (2009)

15. Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.H.: On the formal semantics of speech-
act based communication in an agent-oriented programming language. Journal of Artificial
Intelligence Research 29, 221–267 (2007)

16. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: The
Gaia Methodology. ACM Transactions on Software Engineering and Methodology 12(3),
317–370 (2003)

http://www.opensocial.org

www.manaraa.com

Automatic Generation of Executable Behavior:
A Protocol-Driven Approach

Christian Hahn, Ingo Zinnikus, Stefan Warwas, and Klaus Fischer

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
66123 Saarbrücken

{Christian.Hahn,Ingo.Zinnikus,Stefan.Warwas,Klaus.Fischer}@dfki.de

Abstract. Modern information systems are considered as collection of
independent units that interact with each other through the exchange
of messages. Especially in the context of multiagent systems, the in-
teraction between agents is of particular importance. Agent interaction
protocols (AIPs) are one important mechanism to define agent-based
interactions. AIPs play a major role within the platform independent
modeling language for multiagent systems (Dsml4Mas). In this paper,
we demonstrate how to design protocols with Dsml4Mas and discuss a
model-driven approach to use the protocol description to generate exe-
cutable code.

1 Introduction

Multiagent systems (MASs) define a powerful distributed computing model, en-
abling agents to cooperate with each other. Thus, beside, aspects like agents
and organizational relationships, the interaction between agents is considered as
basic building block of MASs (see [1]). In accordance to [2], an interaction can be
viewed as a formalization of a concept of dependence between agents, no matter
on whom or how they are dependent. An agent interaction protocol (AIP) as a
special case of interactions describes the manner how messages are exchanged.

The importance of interactions in MAS is underlined by the fact that existing
methods for designing MAS like Tropos [3], Prometheus [4], Gaia [5], or INGE-
NIAS [6] already included mechanisms to express AIPs. In particular, all of them
use some sort of Agent UML diagrams (AUML) [7] for defining agent-based in-
teractions. However, AUML in its current version has some drawbacks that are
intended to be resolved by our approach.

Hence, in this paper, we demonstrate how to design protocol-based interac-
tions using a platform independent modeling language for the domain of MASs
called Dsml4Mas. In [8] an overview of Dsml4Mas and a model transformation
to the execution platform of JACK Intelligent Agents1 is given. The model trans-
formation to JACK allows to close the gap between design and implementation

1 http://www.aosgrp.com/index.html

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 110–124, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

Automatic Generation of Executable Behavior: A Protocol-Driven Approach 111

by taking the complete design made with Dsml4Mas and transferring it to cor-
responding concepts of JACK. The idea to apply the principles of model-driven
development in agent-oriented software is not new (e.g. [9,10]).

However, especially in a more business-oriented context, partners often first
define the manner in which they interact followed by defining the behaviors that
actual implement the agreed interactions. Hence, in this paper, we discuss a
slightly different approach which is more methodology-like. Instead of checking
whether the agent’s internal behavior implements the protocol description, we
focus on a protocol-driven approach that takes a protocol description as a base
and generates a corresponding behavior description that automatically conforms
to the agreed AIP. In a second step, the system designer refines the behavior
description by adding, for instance, private and critical information. Finally, in a
last step, the generated behavior in combination with the remaining design (i.e.
agents, organizations, roles, etc.) is transformed to JACK code that in combi-
nation with manually written code (if necessary) can be executed.

The remainder of this paper is organized as follows. Section 2 discusses the
interaction and behavior view of Dsml4Mas in detail. Followed by Section 3,
demonstrating how to design AIPs with Dsml4Mas. Section 4 discusses our
protocol-driven approach by illustrating how to transform AIPs to executable
code. Related work is given in Section 5. Finally, a conclusion is drawn.

2 Domain Specific Modeling Language for Multiagent
Systems

The domain specific platform independent modeling language for MASs
(Dsml4Mas) defines a graphical language that allows defining MASs indepen-
dent of any existing agent-oriented programming language (AOPL). However,
model transformations can be applied to automatically generate code in accor-
dance to the AOPLs JACK and JADE. The abstract syntax of Dsml4Mas is
defined by a metamodel called Pim4Agents that consists of several views each
focusing on a core building block of MASs.

– Agent view defines how to model single autonomous entities, the capabilities
they have, and the roles they play within the MAS. Moreover, resources
an agent has access to and behaviors used by an agent to solve tasks are
specified.

– Organization view defines how single autonomous agents are arranged to
more complex organizations. Thereby, organizations in Pim4Agents can
either be an autonomous acting entity like an agent, or simple groups formed
to take advantage of the synergies of its members.

– Role view covers the abstract representations of functional positions of within
organizations or other social relationships like interactions.

– Interaction view focuses on the exchange of messages between autonomous
entities. Section 2.1 focuses on the interaction view of Pim4Agents.

www.manaraa.com

112 C. Hahn et al.

Fig. 1. The partial metamodel reflecting the interaction view of Dsml4Mas

– Behavior view describes how the internal behavior of intelligent entities can
be defined in terms of combining simple actions to more complex control
structures or plans. Section 2.2 focuses on the behavior view of Pim4Agents.

– Environment view contains any kind of entity that is situated in the envi-
ronment and the resources shared between agents and roles.

– Multiagent view contains the core building blocks for describing MASs. In
particular, the agents situated in the MAS, the roles they play, and the sorts
of interactions.

– Deployment view describes the run-time agent instances involved in the sys-
tem and how these are assigned to roles.

Pim4Agents bases on Ecore the meta-metamodel of the Eclipse Modeling
Framework2, a formal semantics of Dsml4Mas have been defined in [11]. In
the remainder of this section, we lay the foundations for the remaining parts
of this paper and discuss the interaction and behavior views in detail, but also
mention the links to the remaining views.

2.1 Interaction View

The partial metamodel of the interaction view is depicted in Fig. 1. A Protocol is
considered as a special form of Interaction. Accordingly, the main concepts of a
Protocol are Actor, ACLMessage, MessageFlow, MessageScope and TimeOut. In

2 http://www.eclipse.org/modeling/emf/

www.manaraa.com

Automatic Generation of Executable Behavior: A Protocol-Driven Approach 113

the deployment view, furthermore, the system designer can specify how Protocols
are used within Organizations. This is done through the concept of Collaborations
that define which organizational members are bound to which kind of Actor as
part of an ActorBinding.

In Dsml4Mas, interaction roles like ’Participant’ or ’Initiator’ are called Ac-
tors that bind AgentInstances at design time or even at run-time. Actors as
a specialization of Role can have subactors, where an AgentInstance bound to
the parent actor must be bound to exactly one subactor. The actor subactor
relationship is discussed in more detail in Section 3. Furthermore, Actors re-
quire and provide certain Capabilities and Resources defined in the role view of
Pim4Agents.

Messages are an essential mean for the communication between agents in
MASs. In Pim4Agents, we distinguish between two sorts of messages, i.e. Mes-
sage and ACLMessage which further includes the idea of Performatives. Mes-
sages have a content and may refer to an Ontology that can be used by the Agents
to interpret its content. A MessageFlow defines the states of the AIP in which an
Actor could be active. The main function of the MessageFlow is firstly to send
and receive ACLMessages which is done through the concept of a MessageScope
and secondly to specify time constraints (i.e. the latest point in time) in which
these ACLMessages need to be sent and received through the TimeOut concept.
A TimeOut defines the time constraints for sending and receiving messages and
how to continue in case of a TimeOut through the messageFlow reference.

A MessageScope defines the ACLMessages and the order how these are sent
and received. In particular this is achieved by connecting ACLMessages via Ex-
changeModes. Beside ACLMessages sent and received, a MessageScope may also
refer to Protocols that are initiated at some specific point in time in the parent
Protocol. This particular feature allows modeling of nested protocols. The order
in which ACLMessages are exchanged is defined by a so-called ExecutionMode
featuring the following alternatives. A Sequence defines a sequencing of traces
timely ordered. A Parallel denotes that several traces are executed concurrently
and a Loop describes that a particular trace is executed as long as a particular
condition is satisfied. Finally, None specifies that only a single ACLMessage is
exchanged. A combination of these ExchangeModes can easily be achieved by
the MessageScope’s messageSplit reference which allows to nest ExchangeModes.
Further branching can be defined by specifying transitions between Message-
Flows using their messageflow reference.

2.2 Behavioral View

The behavioral view describes how plans are composed by complex control
structures and simple atomic tasks and how information flow between those
constructs. The core concepts of the behavioral view are depicted in Fig. 2.

A Plan can be considered as a specialization of the abstract Behavior to
specify an agent’s internal processes. An Agent can use several Plans, each of
them contains a set of Activities and Flows (i.e. ControlFlow, InformationFlow)
that link Activities together. The body of a Plan is mainly represented by the

www.manaraa.com

114 C. Hahn et al.

Fig. 2. The partial metamodel reflecting the core behavioral view of Dsml4Mas

specializations of an Activity. A StructuredActivity is an abstract class that in-
troduces more complex control structures into the behavioral view. It inherits
from Activity, but additionally owns a set of Activities and ControlFlows.

A Sequence as a specialization of a StructuredActivity denotes a list of Activi-
ties to be executed in a sequential manner as defined by contained ControlFlows
through their sink and source attributes. A Split is an abstract class that defines
a point in a Plan where a single thread of control splits into multiple threads
of control. We distinguish between Parallel and Decision as specializations of
Split. A Parallel is a point in a Plan, where a single thread of control splits into
multiple threads of control which are executed in parallel. Thus a Parallel al-
lows Activities to be executed simultaneously or in any order. How the different
threads are synchronized is defined by a SynchronizationMode. Feasible options
are XOR, AND and NofM (i.e. n of m paths are synchronized). In contrast to
a Parallel, a Decision in Pim4Agents is a point in a Plan where, based on a
condition, at least one Activity of a number of branching Activities must be cho-
sen. A Decision can either be executed in an XOR or OR manner. In contrast, a
Loop is a point in a Plan, where a set of Activities are executed repeatedly until
a certain pre-defined condition evaluates to false. It allows looping that is block
structured, i.e. patterns allow exactly one entry and exit point. A ParallelLoop
as a specialization of Loop and Parallel allows specifying iterations in the form
that each trace is executed in parallel.

Like a StructuredActivity, a Task is an abstract class that inherits from Ac-
tivity. Unlike a StructuredActivity, a Task mainly focuses on atomic activities
and thus does not contain any Activities or ControlFlows. Sending and receiv-
ing messages is covered by the Send and Receive tasks. Furthermore, the Wait
activity allows to wait for a particular time or event, the InternalTask activity
can be used to define code.

www.manaraa.com

Automatic Generation of Executable Behavior: A Protocol-Driven Approach 115

Fig. 3. Contract net protocol modeled using Dsml4Mas

3 Example: Contract Net Protocol

In the following, we demonstrate how to model AIPs using Dsml4Mas’s graph-
ical editor. This editor is based on the abstract syntax (i.e. Pim4Agents meta-
model) partly introduced in the previous section and uses the Eclipse’s Graphical
Modeling Framework3. Beside the graphical notation that supports modeling of
each view in a graphical manner, by clicking on the graphical symbol, the prop-
erties of this concept can be further specified and refined in the properties view.
A detailed overview on the graphical editor can be found in [12].

For illustrating how to model AIPS, we use the CNP [13] which is depicted
in Fig. 3. Therefore, we firstly introduce two actors called Initiator and Partic-
ipant. The protocols starts with the first message flow of the Initiator that is
responsible for sending the CallForProposal message of the performative type
cfp. The CallForProposal message specifies the task as well as the conditions
that can be specified within the properties view of the graphical editor. When
receiving the CallForProposal, each agent instance performing the Participant
decides on the base of free resources whether to Propose or Refuse. However, how
this selection function is defined cannot be expressed in the protocol description,
as private information are later manually added to the automatically generated
behavior description. To distinguish between the alternatives, two additional ac-
tors (i.e. Propose and Refuse) are defined that are subactors of the Participant
(i.e. any agent instance performing the Participant should either perform the
Propose or Refuse actor). The transitions between the message flow within the
3 http://www.eclipse.org/gmf/

www.manaraa.com

116 C. Hahn et al.

Participant and the message flows of the Refuse or Propose actors through the
messageFlow reference underline the change of state for the agent instance per-
forming the Participant actor. However, the transitions are only triggered if a
certain criterion is met. In the CNP case, the criterion is that the Initiator got
all replies, independent of its type (i.e. Refuse or Propose). The postConditions
of a MessageFlow can be defined in the properties view of the graphical editor.
The message flows within the Refuse and Propose actors are then responsible for
sending the particular messages (i.e. Refuse and Propose).

After the deadline expired—defined by the TimeOut—or all answers sent by
the agent instances performing the Participant actor are received, the Initiator
evaluates the proposals in accordance to a certain selection function, chooses
the best bid(s) and finally assigns the actors BestBidder and RemainingBidder
accordingly. Again, the selection function is not part of the protocol, but can
be defined later on in the corresponding plan. Both, the BestBidder actor as
well as the RemainingBiddder actor—containing the agent instances that were
not selected—are again subactors of the Propose actor. The Initiator sends an
AcceptProposal message to the BestBidder and a RejectProposal message to the
RemainingBidder in parallel. After completing the work on the assigned task, the
BestBidder reports its status to the Initiator by either sending an InformResult,
InformResult or Failure message. For this purpose, we distinguish again between
three subactors of BestBidder.

4 Model-Driven Methodology to Generate Executable
Code

The process of generating executable code based on a protocol description is
discussed in this section in more detail. This methodology consists of two phases
depicted in Fig. 4. In a first step, a transformation from the protocol description
to the internal behaviors of the participating agents is discussed. In a second step,
the transformation from the behavioral perspective to the agent-based execution
platform JACK is given. Both transformations were implemented utilizing the
Atlas Transformation Language4.

4.1 From Interaction Protocol to Behaviors

Model Transformation. The general approach we take in this model trans-
formation is to initiate one Plan for each Actor not being referred by any other
Actor as sub-actor. How this is done concretly is depicted by Mapping Rule 1.

Mapping Rule 1: MessageFlow → Plan

– name: name of the MessageFlow plus the name of the active Actor
– steps: collection of Send and Receive tasks (cf. Mapping Rule 5 and

6), Parallel, Sequence, and Loop activities (cf. Mapping Rules 2-4)
– flows: collection of ControlFlows combining the generated Activities

4 http://www.eclipse.org/m2m/atl/

www.manaraa.com

Automatic Generation of Executable Behavior: A Protocol-Driven Approach 117

Fig. 4. Conceptual model transformations between (i) the interaction view and behav-
ioral view (left hand side) and (ii) the behavioral view and JackMM plan aspect (right
hand side)

A MessageFlow is considered as a state an Actor is within an Interaction, where
mainly to actions are feasible, namely sending and receiving ACLMessages. Even
if Mapping Rule 1 only transforms the first MessageFlow of any active Actor
directly, any subsequent MessageFlow of the same Actor and relevant information
with respect to (i) the MessageScopes used by the subsequent MessageFlows and
(ii) potential Timeouts is collected in order to form the body of the Plan by
applying the corresponding mapping rules.

The Plans generated for one Actor are collected and included in the Actors
provided Capabilities. Any Agent which may possibly be bound to this Actor
through its DomainRole will have access to this Behavior to make use of. Beside
instantiating a Plan, a MessageFlow is also the source for generating Decisions.
However, only MessageFlows are considered that have a non-empty messageflow
reference. This means that in these particular MessageFlows, the Actor is split
into two or more subactors. This split may base on a condition that will be
exactly specified within the Decision introduced in the generated Plan.

Within the body of a Plan, the order of sending and receiving Messages is
deduced from the order in which the corresponding MessageScopes are arranged
and to which ExchangeMode (i.e. None, Parallel, Loop or Sequence) they refer.
This means in particular that a Parallel operation is mapped to a Parallel ac-
tivity, a Sequence operation is mapped to a Sequence activity, and finally a Loop
operation is mapped to a Loop activity as defined by the following three mapping
rules.

Mapping Rule 2: ExchangeMode:Parallel → Parallel

– name: name of the ExchangeMode’s MessageScope
– flows: collection of ControlFlows combining the generated Activities

www.manaraa.com

118 C. Hahn et al.

– steps: collection of MessageScopes part of the MessageScope’s mes-
sageSplit reference addressing this ExchangeMode through the oper-
ation attribute

For any kind of MessageScope part of the particular MessageScope of type Exe-
cutionMode:Parallel a unique trace of the particular Parallel activity is defined
which may consists of any other combination of complex (e.g. Sequence) or simple
(e.g. Send, Receive) control structure. How to transform EchangeMode:Sequence
is depicted in Mapping Rule 3.

Mapping Rule 3: ExchangeMode:Sequence → Sequence

– name: name of the ExchangeMode’s MessageScope
– flows: collection of ControlFlows combining the generated Activities
– steps: collection of MessageScopes part of the MessageScope’s mes-

sageSplit reference addressing this ExchangeMode through the oper-
ation attribute

In contrast to ExchangeMode:Parallel, in the case of a Sequence, a unique trace
is specified. The order in which the Activities are arranged is deduced from the
order (from top to bottom) of the contained MessageScope.

Mapping Rule 4: ExchangeMode:Loop → Loop

– name: name of the ExchangeMode’s MessageScope
– flows: collection of ControlFlows combining the generated Activities
– steps: collection of MessageScopes part of the MessageScope’s mes-

sageSplit reference addressing this ExchangeMode through the oper-
ation attribute.

Like in the manner of a Sequence, for any ExchangeMode:Loop, a unique trace
is initiated. The order is again deduced from the ordering of contained Mes-
sageScopes.

In contrast to the different types like Parallel, Loop, or Sequence, a Exchange-
Mode:None refers to exactly one ACLMessage. As any kind of message needs
to be sent but also received, the particular MessageScope is either mapped to
a Receive or Send task, depending on whether the corresponding MessageFlow
sends or receives the ACLMessage.

Mapping Rule 5: ExchangeMode:None → Send

– name: name of the ExchangeMode’s MessageScope
– message: reference to the transformed ACLMessage (cf. Mapping

Rule 7) that is referred by the ExchangeMode’s MessageScope

Mapping Rule 6: ExchangeMode:None → Receive

– name: name of the ExchangeMode’s MessageScope
– message: reference to the transformed ACLMessage (cf. Mapping

Rule 7) that is referred by the ExchangeMode’s MessageScope

www.manaraa.com

Automatic Generation of Executable Behavior: A Protocol-Driven Approach 119

The Send and Receive activities generated by the Mapping Rules 5 and 6 refer
to a Message that is generated by applying Mapping Rule 7. As ACLMessages
are sent and received to/from multiple Actors that are possibly performed by
multiple AgentInstances, both, Send and Receive, have to be included in a par-
allel statement (i.e. ParallelLoop) that iterates over all AgentInstances currently
performing this Actor. This allows keeping a Plan as generic as possible, as the
information how many AgentInstances are finally playing the particular Actors
does not need to be known at design time. The next rule deals with the mapping
between ACLMessages and Messages.

Mapping Rule 7: ACLMessage → Message

– name: name of the ACLMessage
– aclMessage: reference to the target ACLMessage

Mapping Rule 7 mainly defines the type of the Message that is referred by Send
and Receive activities. However, as a Protocol does not provide any information
concerning the message’s content, the Message’s content slot needs to be filled
manually. The same holds for the sender and receiver slot, as the AgentInstance
sending and receiving the particular Message is in the most cases not available
during design-time, but most properly appointed at run time.

Finally, the last basic rule deals with the mapping of TimeOuts. Therefore,
each TimeOut is mapped in the manner that a Wait activity is introduced and
integrated into a Parallel activity consisting of two paths. One path includes the
Wait activity, the other one includes the Activities responsible for sending and
receiving messages within the given time frame.

Mapping Rule 8: TimeOut → Wait

– name: name of the TimeOut
– timeout: reference to the target TimeOut

Mapping Rule 8 generates a Wait activity that refers to a single TimeOut to
specify the time the particular Agent has to wait.

Generated Behaviors. Fig. 5 depicts the generated initiator’s plan for col-
lecting the initial responses from the participant’s side and sending of accept
and reject messages. It bases on the message flows responsible for receiving the
Refuse and Propose messages and sending the Reject and Accept messages. The
plan mainly consists of three phases. In the first phase, the CollectResponses
parallel is triggered that has two paths, one responsible for waiting until the
particular TimeOut is raised and one for collecting the responses. The execution
mode of this parallel statement is XOR, meaning that the statement can be
left after all messages were received or a certain time—which is defined by the
TimeOut in the Protocol—has been waited. The execution mode of a parallel
statement can be selected within the properties view of the graphical editor.
This is also the case for Messages referred to by Send/Receive and TimeOuts
referred to by Wait.

www.manaraa.com

120 C. Hahn et al.

Fig. 5. The generated SendAcceptReject plan

The messages are collected inside a Parallel called CollectResponsesParallel.
For each entity bound to the Participant actor, either the ParallelLoop Receive-
ProposeParallelLoop or the ParallelLoop ReceiveRefuseParallelLoop is executed.

In the second phase, the SelectBestBidder plan is triggered which needs to be
added manually as the information according to which criteria the best bidders
are selected is not part of the protocol description. After an allocation has been
evaluated, in the last phase, the agent instances are assigned to the corresponding
actors BestBidder and RemainingBidder and informed accordingly. This is done
in the SendAcceptReject parallel, where the Reject and Accept messages are sent
to the RemainingBidder and BestBidder concurrently. Again, the send tasks are
integrated into a parallel loop activity specifying that for each agent instance
bound to one of the actors either the message Accept or Reject is sent.

4.2 From Behaviors to JACK

JACK is a process-centric agent-based programming language that bases on
principles of the belief-desire-intention theory [14]. JACK mainly focuses on the
internal perspective of an agent defined by so-called plans, an interaction proto-
col perspective between agents is not provided. In [15], we defined a metamodel
for JACK called JackMM that distinguishes between the team view and the
process view. The right hand side of Fig. 4 depicts some concepts of the process
view briefly discussed in the following. A TeamPlan in JackMM is a special Plan
that can be used within a Team to organize its members. Normally, a Team-
Plan handles exactly one and may send several Events which is pretty similar
to Messages in Dsml4Mas (at least those Events that are of the type message
event). Several activities like SendNode, ParallelNode, DecisionNode and Flows
are available within a TeamPlan to define how to achieve a certain goal. A more
complete overview on JackMM-related concepts can be found in [15].
The conceptual transformation from the behavioral metamodel of Dsml4Mas to
the JACK process metamodel is illustrated on the right hand side of Fig. 4. For
each Plan generated by applying the interaction to behavior transformation, a
TeamPlan is generated. The body of this TeamPlan is generated in an one-to-one

www.manaraa.com

Automatic Generation of Executable Behavior: A Protocol-Driven Approach 121

Fig. 6. The generated SendAcceptReject team plan in JACK (partial)

manner at least for those activities in Pim4Agents that were directly supported
by JACK. An example is the Send activity which is transformed to a SendNode in
JACK. The Message a Send refers to is directly transformed to the corresponding
Event. As a TeamPlan automatically handles an Event, we do not need to directly
transfer Receive activities of Dsml4Mas to related concepts in JACK. However,
as Plans in Dsml4Mas base on MessageFlows which clearly describe which
Messages are received and sent, we can easily generate the TeamPlan-specific
structure. Concepts like Parallel, Decision and Wait can also be mapped in an
one-to-one fashion as illustrated in Fig. 4. In the contrast to concepts like Loop,
ParallelLoop and Sequence which are not directly supported by JACK. In the
case of Sequences this can easily be compensated by connecting the predecessor
of a Sequence with the first activity within the Sequence and the last activity
of a Sequence with its successor. For the concepts of Loop and ParallelLoop, we
define templates consisting of several activities of the process view (e.g. Decision
concept used for looping purpose) and filled with the activities contained by the
source concepts (i.e. Parallel and ParallelLoop).

Fig. 6 depicts the generated SendAcceptReject team plan. Due to space re-
strictions, we mainly focus on the part responsible for sending the Accept event.

www.manaraa.com

122 C. Hahn et al.

Though, except the names of the variables and the event sent, the part of sending
the Reject event is rather similar. As depicted in Fig. 4 and mentioned earlier,
for each Plan in Dsml4Mas, we generate a corresponding TeamPlan. Hence,
the corresponding team plans ReceivePropose and ReceiveRefuse are not part
of SendAcceptReject. Those are automatically triggered whenever a Refuse and
Propose event is sent by the any participant. Both plans are responsible for up-
dating the belief set of the particular agent with the information whether the
replying agent instance refuses or proses.

After the deadline expires or all answers were received, the SelectBestBidder
team plan is invoked using the concept achieve. Internally, the achieve statement
posts an internal event which triggers the SelectBestBidder plan and waits until
the best bidder and remaining bidders were selected. Afterwards, the evaluation
is reported to the proposed agent instances. Like in the corresponding plan of
Dsml4Mas illustrated in Fig. 5, this is done using the parallel statement of
JACK. For each, the best bidders and the remaining bidders, a path is instan-
tiated responsible for sending the particular event. The process of sending is
again done in a parallel statement. However, in this case, the parallel works as
a parallel iteration, as for each agent instance of the best bidders (i.e. accept)
an event mes is sent. The loop terminates if every instance is addressed which
is ensured by the code BestBidderEnumeraion.hasMoreElements() part of the
decision.

5 Related Work

In the MAS community, Agent UML (AUML) is the most prominent modeling
language for specifying AIPs. AUML is an extension of the Unified Modeling
Language (UML) to overcome the limitations of UML with respect to MAS
development. In particular, AUML specifies AIPs by providing mechanisms to
define agent roles, agent lifelines (interaction threads, which can split into several
lifelines and merge at some subsequent points using connectors like AND, OR
or XOR), nested and interleaved protocols (patterns of interaction that can be
reused with guards and constraints), and extended semantics for UML messages
(for instance, to indicate the associated communicative act, and whether mes-
sages are synchronous or not). However, AUML does not allow to express more
specialized subactors. For this purpose, in [16], Haugen suggested two improve-
ments to the UML 2.0 sequence diagram notation in order to define multicast
messages and combined-fragment iterators over subsets. This approach share
several commonalities with our approach. However, the suggested improvements
are not part of the recent version of AUML. Even if AUML can be considered
as de facto standard for modeling AIPs, tool supported is very limited. In [17],
a textual notation and graphical tool have been presented. In [18], an approach
is presented that automatically interprets AUML AIPs. However, the resulting
tool called Paul (Plug-in for Agent UML Linking) only supports parts of AUML
as only the alternative operator is implemented. Furthermore, the code genera-
tion is limited to two agent lifelines and it is pretty unclear if multicast messages
are supported.

www.manaraa.com

Automatic Generation of Executable Behavior: A Protocol-Driven Approach 123

6 Conclusion

This paper discusses an approach to describe agent interactions in a protocol-
based manner. For this purpose, we discussed the interaction and behavioral
parts of our domain specific modeling language for MAS (Dsml4Mas) and il-
lustrated how to use Dsml4Mas to design the contract net protocol. The ap-
proach we are taking in the interaction view is intended to express that there
are different actors relative to the initiator described in the protocol. Rather
than defining one actor that is fully general, we now describe one actor for each
distinct situation. Hence, protocols like the CNP can easily be described using
the interaction view of Dsml4Mas as one-to-many interactions as well as the
differentiation between subactors of the same actor is naturally supported. This
is a very interesting result as AUML lacks this kind of expressiveness.

Beside demonstrating how to model AIPs using Dsml4Mas we furthermore
discussed how to transform agent interaction protocols designed to executable
behaviors by applying principles of model-driven development. Therefore, we
firstly transformed the interaction description to a process-centric model in
Dsml4Mas. Therefore, we defined a mapping between concepts of the inter-
action and the behavioral metamodel. This was mainly done in an one-to-one
manner, however, private information needs to be integrated in the agents’ in-
ternal behavior to make each agent’s behavior complete regarding execution. In
a next and last step, the Dsml4Mas model including the generated behavioral
model is mapped to the agent-based programming language JACK which finally
allows to execute the protocol description.

References

1. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of the ACM 44(4), 35–41 (2001)

2. Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM Com-
puting Surveys 26(1), 87–119 (1994)

3. Susi, A., Perini, A., Giorgini, P., Mylopoulos, J.: The tropos metamodel and its
use. Informatica 29(4), 401–408 (2005)

4. Padgham, L., Thangarajah, J., Winikoff, M.: AUML protocols and code generation
in the prometheus design tool. In: AAMAS 2007: Proceedings of the 6th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–2.
ACM, New York (2007)

5. Cernuzzi, L., Zambonelli, F.: Experiencing AUML in the GAIA methodology. In:
Proceedings of the 6th International Conference on Enterprise Information Sys-
tems, Porto, Portugal, April 14-17, pp. 283–288 (2004)

6. Pavón, J., Gómez-Sanz, J.J.: Agent oriented software engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, p. 394. Springer, Heidelberg (2003)

7. Bauer, B., Odell, J.: UML 2.0 and agents: How to build agent-based systems with
the new UML standard. Journal of Engineering Applications of AI 18(2), 141–157
(2002)

www.manaraa.com

124 C. Hahn et al.

8. Hahn, C.: A domain specific modeling language for multiagent systems. In:
Padgham, L., Parkes, C.P., Mueller, J., Parsons, S. (eds.) Proceedings of 7th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2008), pp. 233–240 (2008)

9. Rougemaille, S., Arcangeli, J.-P., Gleizes, M.-P., Migeon, F.: ADELFE Design,
AMAS-ML in Action. In: Artikis, A., Picard, G., Vercouter, L. (eds.) ESAW 2008.
LNCS, vol. 5485, pp. 105–120. Springer, Heidelberg (2009)

10. Jayatilleke, G., Thangarajah, J., Padgham, L., Winikoff, M.: Component agent
framework for domain-experts (cafne) toolkit. In: Proceedings of the Fifth Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2006), pp. 1465–1466. ACM, New York (2006)

11. Hahn, C., Fischer, K.: The formal semantics of the domain specific modeling lan-
guage for multiagent systems. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008.
LNCS, vol. 5386, pp. 145–158. Springer, Heidelberg (2009)

12. Warwas, S., Hahn, C.: The contrete syntax of the platform independent modeling
language for multiagent systems. In: Proceedings of the Agent-based Technologies
and Applications for Enterprise InterOPerability, ATOP 2008 (2008)

13. Smith, R.G.: The contract net protocol: high-level communication and control in
a distributed problem solver, pp. 357–366 (1988)

14. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Fikes, R.,
Sandewall, E. (eds.) Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning (KR 1991), Cambridge, Mass., pp.
473–484. Morgan Kaufmann, San Francisco (1991)

15. Fischer, K., Hahn, C., Madrigal-Mora, C.: Agent-oriented software engineering: a
model-driven approach. International Journal on Agent-Oriented Software Engi-
neering 1(3/4), 334–369 (2007)

16. Haugen, O.: Challanges to UML 2 to describe FIPA Agent Protocol. In: Proceed-
ings of Agent-based Technologies and applications for enterprise interOPerability
(ATOP 2008). Workshop held at the Seventh International Joint Conference on
Autonomous Agents & Multiagent Systems, pp. 37–46 (2008)

17. Winikoff, M.: Towards making Agent UML practical: A textual notation and a
tool. In: QSIC 2005: Proceedings of the Fifth International Conference on Qual-
ity Software, Washington, DC, USA, pp. 401–412. IEEE Computer Society, Los
Alamitos (2005)

18. Ehrler, L., Cranefield, S.: Executing agent uml diagrams. In: AAMAS 2004: Pro-
ceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 906–913. IEEE Computer Society, Los Alamitos (2004)

www.manaraa.com

On the Development of Multi-agent Systems
Product Lines: A Domain Engineering Process

Ingrid Nunes1, Carlos J.P. de Lucena1, Uirá Kulesza2, and Camila Nunes1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro, Brazil
{ionunes,lucena,cnunes}@inf.puc-rio.br

2 Federal University of Rio Grande do Norte (UFRN) - Natal, Brazil
uira@dimap.ufrn.br

Abstract. Multi-agent System Product Lines (MAS-PLs) are the inte-
gration of twopromising technologies:Multi-agent Systems (MASs),which
provides a powerful abstraction to model features with autonomous and
pro-activebehavior, andSoftwareProductLines (SPLs),whoseaim is to re-
duce both time-to-market and costs in the development of system
families by the exploitation of commonalities among family members. This
paper presents a domain engineering process for developing MAS-PLs. It
definesactivitiesandworkproducts,whosepurposes includeallowingagent
variability andproviding agent features traceability, both not addressed by
current SPL and MAS approaches.

Keywords: Multi-agent Systems, Software Product Lines, Domain
Engineering, Software Process.

1 Introduction

Complex modern software systems tend to be situated, open, autonomous and
highly interactive [1]. Agent-oriented Software Engineering (AOSE) has emerged
as new paradigm that addresses the development of complex and distributed
systems based on their decomposition into autonomous and pro-active agents,
which together compose a Multi-agent System (MAS). However, MAS method-
ologies have not addressed so far the need of developing large scale customized
systems and little effort has been done to take advantage of software reuse
techniques. Software Product Lines (SPLs) manage to promote reduced time-
to-market, lower development costs and higher quality to the development of
applications that share common and variable features. A feature is a system
property that is relevant to some stakeholder and is used to capture common-
alities or discriminate among products in a SPL. Based on the exploitation of
application commonalities and large-scale reuse, these applications are derived
in a systematic way and are customized to specific user needs. In order to fulfil
the increasing demand of large-scale and customized MASs, Multi-agent Sys-
tem Product Lines (MAS-PLs) have emerged to integrate these two promising
trends of software engineering. The main goal of MAS-PLs is to incorporate their
respective benefits and to help the industrial exploitation of agent technology.

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 125–139, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

126 I. Nunes et al.

In this context, this paper presents a domain engineering process for develop-
ing MAS-PLs. The two main issues in the MAS-PL development that we aim at
addressing and have not been addressed by current approaches are: (i) document-
ing agent variability – explicit variability documentation is essential in SPLs [2].
Nevertheless, SPL approaches do not cover variability documentation in agent
models; they focus on specific models, e.g. object-oriented [3] and component-
oriented [4]; and (ii) tracing agent features – feature traceability allows to specify
the configuration knowledge between problem and solution space thus enabling
the selection of appropriate artifacts of a SPL in the product derivation process.
In defining our process we introduce new and modified models as well as leverage
some activities and notations that consist of parts of methods of existing SPL
and MAS approaches [3,5,6].

Besides providing customized applications derived in a systematic way, the
scenario we are currently exploring is the incorporation of autonomous and pro-
active behavior to existing web systems. This is becoming common practice
for several web-based systems, for instance recommending products in online
stores and displaying personalized advertisements in search engines according to
previous searches. We have distinguished these features that provide autonomous
and pro-active behavior by naming them as agent features. Consequently, we
aim at explicitly separating agent and non-agent features, mainly due to two
reasons: (i) agent abstraction provides some particular characteristics, such as
autonomy and pro-activeness. Features that do not require them can be modeled
and implemented using other technologies (e.g. object-oriented) taking benefit
from frameworks and approaches already proposed; and (ii) we aim at supporting
the evolution of existing applications and SPLs that have been developed using
other existing technologies by the incorporation of agent features. Given that
we are adopting a feature-oriented development approach, features are modeled
independently of each other. Therefore, it is possible to modeling agent and
non-agent features in different ways.

The paper is structured as follows. Related work is presented in Section 2. Sec-
tion 3 presents the proposed domain engineering process, first giving an overview
of it, and later detailing each of its phases. Section 4 concludes this paper and
points out directions for future work.

2 Existing MAS-PL Approaches

Several approaches have been published to address problems and challenges of
both SPL and MAS engineering [3,5,6,7]. Even though many MAS methodologies
have been proposed, most of them do not take into account the adoption of
extensive reuse practices that can bring an increased productivity and quality to
the software development [8]. They do not consider variability on agent models
and do not take into account feature modularization and traceability. Despite
the fact that SPL approaches provide useful notations to model agent features,
none of them completely covers all their properties and concepts [9]. They do
not provide models to design agent concepts and map them to features.

www.manaraa.com

On the Development of Multi-agent Systems Product Lines 127

Only few attempts have explored the integration synergy of MASs and SPLs.
Pena et al. [10] propose an approach based on MaCMAS methodology, which
consists of using goal-oriented requirement documents, role models, and trace-
ability diagrams in order to build a first model of the system. A principle of
SPLs is to design and implement features as modularized as possible in order
to allow an effective application engineering. However, their approach proposes
that variabilities are analyzed after modeling the MAS, and this can lead to un-
desired situations, such as, the high coupling between mandatory and optional
features and inadequate modularization of agent features.

Dehlinger & Lutz [11] have proposed an extensible agent-oriented require-
ments specification template for distributed systems that supports safe reuse.
Their proposal adopts a SPL approach to promote reuse in MASs, which was
developed using the Gaia methodology. Although this approach provides a tem-
plate to capture agent variability, it covers only the requirements engineering
phase, and therefore it does not offer a complete solution to address the model-
ing of agent features in the domain design and implementation.

3 A Domain Engineering Process for MAS-PL

SPL engineering [7,4] aims at improving the development of system families by
exploiting common features of applications. A SPL is defined as [7] “a set of
software intensive systems that share a common, managed set of features sat-
isfying the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way.” SPL en-
gineering allows a systematic derivation of products of the same family from a
flexible architecture that supports variability. It is typically composed of two key
processes: domain engineering and application engineering. Domain engineering
is the process of SPL engineering in which SPL commonalities and variabilities
are identified, defined and realized. During the application engineering, applica-
tions of the SPL are built by reusing domain artifacts and exploiting the SPL
variability. The process of deriving products based on reusable domain artifacts
is called product derivation process. This section first introduces our domain
engineering process and describes its key characteristics (Section 3.1). Later, it
presents and analyzes approaches that led to some activities and notations in-
corporated to our process. (Section 3.2). Finally, it details each phase of our
domain engineering process (Sections 3.3, 3.4 and 3.5).

We illustrate our process phases with our ExpertCommittee (EC) case study
[12]. It is a MAS-PL of conference management systems, whose aim is to manage
paper submission and reviewing processes from conferences. The multi-agent
version of this kind of system was first proposed in [13] and since has been widely
used to the elaboration and application of MAS methodologies. We assume the
readers of this paper are mostly knowledgeable about the domain, but a complete
description about this case study can be seen in [12]. The EC MAS-PL was
developed in a stepwise fashion. The first version comprises the MAS-PL core
built with object-oriented technology, providing mandatory features. Later, new

www.manaraa.com

128 I. Nunes et al.

features were added to this core: reviewer role and functionalities related to it;
automatic suggestion of conferences to authors; message notifications to users
through email or SMS (alternative feature); and automatic assignment of papers
to committee members. Most of these new features have the goal of automating
tasks previously done by users. Due to the pro-active and autonomous nature
of these features, they were developed using agent technology. Products may be
derived from the MAS-PL by the selection of optional and alternative features.

Due to space restrictions, we focus on describing activities purposes and their
main output work products, suppressing some details such as tasks of each ac-
tivity and roles. Additional details and work products of the EC case study can
be found in [14].

3.1 Process Overview

Our process is structured according to the SPEM [15], which provides a common
syntax and modeling structure to construct software process models. It is based
on three main levels: (i) phases – significant periods in a process; (ii) activities –
general units of work; and (iii) tasks – define work being performed by roles and
are associated with input and output work products. Figure 1 summarizes our
process. Following typical domain engineering processes, our approach encom-
passes three phases: (i) Domain Analysis: the main concepts and activities in a
domain are identified and modeled using adequate modeling techniques. Com-
mon and variable parts of a system family are identified; (ii) Domain Design:
its purpose is to develop a common system family architecture and production
plan for the SPL; and (iii) Domain Realization: it involves implementing the
architecture, components, and the production plan using appropriate technolo-
gies. The qualifier “domain” emphasizes the multisystem scope of these phases.
Figures 2 and 3 present most of the work products used in the Domain Analysis
and Domain Design phases, respectively. showing relationships among models.

Our process aggregates activities and notations that are specific to model
agents and their variabilities to address MAS-PLs. Notations and guidelines
that have been adopted alongside all our process are: (i) use of �kernel�,
�optional� and �alternative� stereotypes to indicate variability in different
model elements (e.g. use cases, classes and agents) of several models; (ii) sepa-
rated modeling of features, to stress the fact that diagrams are split accordingly;
(iii) specific models to provide features traceability along all the process. Most
activities have a specific task for generating the traceability model; and (iv) use
of colors to structure models in terms of features. A different color is attributed
for each feature and this color is used in all model elements related to the fea-
ture. This is a redundant information used to provide a better visualization of
features traceability, even though it is already provided by dependency models.

3.2 Method Fragments Incorporated to Our Process

Even though SPL and MAS approaches present deficiencies to develop MAS-
PLs, they provide useful notations and activities that can be integrated to model

www.manaraa.com

On the Development of Multi-agent Systems Product Lines 129

F
ig

.
1
.
T

he
D

om
ai

n
E

ng
in

ee
ri
ng

P
ro

ce
ss

www.manaraa.com

130 I. Nunes et al.

MAS-PLs. Consequently, instead of proposing an approach from scratch, we have
incorporated fragments of existing approaches into our process.

The PLUS method [3] provides a set of concepts and techniques to extend
UML-based design methods and processes for single systems to handle SPLs.
Basically the reasons for adopting PLUS are [9]: (i) it explicitly models the com-
monality and variability in a SPL, mainly through the use of UML stereotypes;
(ii) it uses feature modeling to address variability in the domain analysis, as it is
commonly done in SPL approaches. On the other hand, other SPL approaches
have the following drawbacks: they either focus mainly on management aspects
of SPLs [7], also lack design details, or just provide high level guidelines [16].

In order to model agent features at the Domain Analysis phase, we have
adopted some phases of PASSI [5], an agent-oriented methodology. It specifies
models with their respective phases for developing MASs, covering all the devel-
opment process. PASSI integrates concepts from object-oriented software engi-
neering and artificial intelligence, and it follows the guideline of using standards
whenever possible. This justifies the use of UML as modeling language. One of
the key reasons for choosing PASSI is that the use of a UML-based notation
enables the merging of complementary notations proposed in PLUS and PASSI,
while establishing a standard for modeling agent and non-agent features.

Instead of using UML for modeling agents in the Domain Design phase, as
PASSI proposes, we use an extended version of it, the MAS-ML modeling lan-
guage [6]. Our focus is to allow the design of agents that follow the belief-desire-
intention (BDI) [17] model, whose advantages include: it is relatively mature,
and has been successfully used in large scale systems; it is supported by several
agent platforms, e.g. Jadex, Jason, JACK and 3APL; and it is based on solid
philosophical foundations. As discussed in [6], some important agent-oriented
concepts, such as environment, cannot be modeled with UML and the use of
stereotypes is not enough because objects and agent elements have different
properties and different relationships. As a consequence, other MAS modeling
languages do not allow the modeling of some agent concepts. MAS-ML extends
the UML meta-model in order to express specific agent properties and relation-
ships. Using its meta-model and diagrams, it is possible to represent the elements
associated with a MAS and to describe the static relationships and interactions
between these elements.

In summary, we have (i) adopted PLUS notations along all the process; (ii) in-
corporated three PASSI phases as activities in the Domain Analysis phase; and
(iii) used MAS-ML to model agent concepts in the Domain Design phase. In ad-
dition, we have proposed (iv) some adaptations to PASSI phases and MAS-ML
in order to allow agent variability and agent features traceability; and (v) defined
new activities and models to address MAS-PL particularities, as well as specified
the sequence and relationship among this activities. The advantage of adopting
these specific method fragments that we chose is that, besides providing notations
and models for MAS-PLs, they can be integrated with each other. All of them are
based on UML, therefore PLUS stereotypes can be incorporated into PASSI and
MAS-ML models. PASSI activities are only used at the analysis level, but concepts

www.manaraa.com

On the Development of Multi-agent Systems Product Lines 131

identified in these activities (agents and roles) are present in MAS-ML metamodel,
so they can be represented in MAS-ML models at the design level.

3.3 Domain Analysis

The Domain Analysis phase defines activities for eliciting and documenting the
common and variable requirements of a MAS-PL. It is concerned with the def-
inition of the domain and scope of the MAS-PL, and specifies its common and
variable features. This phase comprises two sub-phases: Operational Require-
ments and Autonomous Requirements.

In the Operational Requirements sub-phase, the systems family is analyzed
and its common and variable features are identified therefore defining the MAS-
PL scope. Next, requirements are described in terms of use case diagrams and
descriptions. The first activity is the Requirements Elicitation, which captures
requirements in documents based on interactions with domain specialists and
stakeholders. The next activity is the Feature Modeling, which was originally
proposed by the FODA [16] method and is the activity of modeling the common
and variable properties of concepts and their interdependencies in SPLs. It uses
as input the requirements identified in the previous activity. Features are orga-
nized into a tree representation, called features diagram, with a specific notation
for each variability category (mandatory, alternative and optional). EC features
diagram is depicted in Figure 2(a), showing the optional automatic conference
suggestion feature. A feature model refers to a features diagram accompanied by
additional information such as dependencies among features. It represents the
variability within a system family in an abstract and explicit way.

After the Feature Modeling activity, MAS-PL functional features are de-
scribed in terms of use cases, in the Use Case Modeling activity. First, use cases
are identified and described, resulting in both a use case diagram (Figure 2(b))
and use case descriptions. Later, the use case diagram should be refined by: (i)
refactoring use cases to provide feature modularization (each use case should cor-
respond to only one feature). It is accomplished by the use of the generalization
and the extend relationships; and (ii) adding stereotypes to give variability infor-
mation (�kernel�,�optional� and �alternative�). For instance, the Suggest
Conferences is an optional use case and extends the Register Paper use case,
which is part of the MAS-PL kernel. To complete the Operational Requirements,
another use case view is modeled to map use cases to features, resulting in the
Feature/Use Case Dependency model (Figure 2(c)). Use cases are grouped into
features with the UML package notation. These packages are stereotyped with:
(i) �common feature� – represents all mandatory features and groups all kernel
use cases; (ii) �optional feature� – represents optional features and groups use
cases related to a specific optional feature; (iii) �alternative feature� – aggre-
gates alternative features and groups use cases related to a specific alternative
feature. Figure 2(c) shows the EC Feature/Use Case Dependency model with
two optional features: Conference Suggestion and Deadline Messages.

The purpose of the Autonomous Requirements sub-phase is to understand
better the domain, by modeling autonomy and pro-active concerns with respect

www.manaraa.com

132 I. Nunes et al.

to the current problem domain. This kind of concerns is distinguished because
they do not need a user that supervises their execution. Furthermore, they are
not well described in use cases, and consequently they need a more precise spec-
ification. Agents are an abstraction of the problem space that are a natural
metaphor to model pro-active or autonomous behavior. Therefore, it is identi-
fied and specified in models in terms of agents and roles.

The domain concepts are captured through the Domain Ontology Modeling
activity, in which the MAS-PL domain is modeled through an ontology. The
concepts should be modeled taking into account features, by using techniques
such as generalization to modularize features. The ontology is represented by
UML class diagrams, in which classes and their attributes represent concepts
and slots, respectively. Classes of the Ontology Diagram have stereotypes indi-
cating if they are mandatory, optional or alternative, in the same way of use
cases. Finally, a model represented by a table that maps concepts to features is
created in order to provide feature traceability. This model enables the selection
of the appropriate concepts during the application engineering, i.e. if a feature
is selected for a product to be derived, the concepts related with this feature
according to this map must be present in the product.

In parallel to this activity, features that present pro-active or autonomous be-
havior (agent features) are identified and specified in models in terms of agents
and roles. The Agent Features Identification activity is responsible for such iden-
tification. So, a new stereotype (�agent feature�) is added to the packages of
the Feature/Use Case Dependency model to indicate which features are agent
features. In Figure 2(c), both optional features are classified as agent features.
Our process defines activities for specifying these features, however we do not
provide a formal criteria for identifying agent features. Research work in this di-
rection can be seen in [18]. In order to specify the identified agent features, our
process incorporates some activities that correspond to some phases of the Sys-
tem Requirements model of PASSI methodology [19]. Next, we briefly describe
PASSI phases used in our process and our proposed extensions to them.
- Agent Identification: responsibilities (use cases) are attributed to agents,
which are represented as stereotyped UML packages. The use case stereotypes
representing the variability, used in the Use Case diagram, are still present.
Our extensions: only pro-active or autonomous use cases are distributed among
agents, while PASSI proposes the realization of all use cases performed by agents;
adoption of stereotypes (kernel, alternative or optional); and use of colors to
trace features. Figure 2(d) illustrates a partial view of the Agent Identifica-
tion diagram, in which there are three agents (DeadlineAgent, UserAgent and
NotifierAgent). These agents are related with use cases, and relationships be-
tween use cases represent the communication between agents.
- Role Identification: agent interactions are explored and expressed through
sequence diagrams to identify agent roles. Our extensions: diagrams split accord-
ing to features; use of UML 2.0 frames for representing crosscutting features; use
of colors to trace features; and Feature/Agent Dependency model. Figure 2(e)
shows a partial view of the Deadline Messages Role Identification diagram, in

www.manaraa.com

On the Development of Multi-agent Systems Product Lines 133

which class instances represent the role that an agent is playing. In this diagram
the UserAgent is playing the role CommitteeMember. It can be seen a UML 2.0
frame indicating an optional part related with the Reviewer feature.
- Task Specification: activity diagrams are used to specify the capabilities of
each agent. Our extensions: one diagram per agent and feature, while PASSI
proposes one diagram per agent; use of UML 2.0 structured activities for rep-
resenting crosscutting features and use of colors to trace features. Figure 2(g)
presents the tasks that the UserAgent must perform related with the Deadline
Messages feature. There is an optional part related with the Reviewer feature,
delimitated by a UML 2.0 structured activity.

Most of these adaptations are meant to provide variability information in
models. Some proposed notations aims at modularizing crosscutting features,
which are characterized by having impact in several other features. So, instead
of creating new models for them, notations indicate the behavior introduced by
this kind of feature. An additional model (Feature/Agent Dependency model)
provides support to trace from features to agents (and vice-versa). This model
is organized into a tree, whose root represents the MAS-PL, which has children
corresponding to agent features. Each feature has agents as its children indicating
that these elements must be present in the product being derived if the feature
is selected. Agents have roles as children, meaning that the agent plays that
roles for a certain feature. Agents and roles may appear more than once in the
model, meaning that they will be present in a product if at least one agent
feature that depends on them is selected. Figure 2(f) shows a partial view of
the Feature/Agents Dependency model illustrating that the optional feature
Deadline Messages depends on the UserAgent agent and the Chair role.

3.4 Domain Design

The main purpose of the Domain Design phase is to define an architecture that
addresses both common and variable features of a MAS-PL. Based on analysis
models, designers must model the MAS-PL architecture, determining how these
models, including the variability, are implemented in this architecture. Features
modularization must be taken into account during the design of core assets to al-
low the (un)plugging of optional and alternative features. In addition, there must
be a model to map features to design elements providing traceability information.

The Domain Design phase has mainly two parts. First, the MAS-PL architec-
ture is defined and technologies (e.g. frameworks, libraries and agent platforms)
that will be used are selected. The MAS-PL architecture is specified in an UML
package diagram and defined by its decomposition into subsystems and their
components. This helps to reduce the complexity and to allow several design
teams to work independently. Choosing appropriate technologies for designing
and implementing a MAS-PL is a very important step of its development, be-
cause they have an impact on how features are modularized.

On the second part, each feature is statically and dynamically designed in
three different activities: Components Modeling, Agents Modeling and Agent
Society Modeling. The first activity concerns the design of non-agent features.

www.manaraa.com

134 I. Nunes et al.

(a) Feature Model
(b) Use Case Diagram

(c) Feature/Use Case Dependency

(d) Agent Identification Diagram
(e) Role Identification Diagram

(g) Task Specification Diagram(f) Feature/Agent Dependency

Fig. 2. EC Analysis Work Products (Partial)

www.manaraa.com

On the Development of Multi-agent Systems Product Lines 135

This design step is basically provided by the PLUS approach, with the modeling
of traditional UML diagrams extended with PLUS stereotypes.

Agent features are modeled in two activities of our process. They are performed
in parallel and may contribute with each other. In the Agents Modeling activ-
ity, agents with their beliefs, goals and plans are modeled; and in the Agent Soci-
ety Modeling activity, roles and organizations are modeled. As mentioned in Sec-
tion 3.2, we use MAS-ML to model agents. Its structural diagrams are the ex-
tended UML class diagram and two new diagrams: organization and role. MAS-
ML extends the UML class diagramto represent the structural relationships among
agent concepts. The organization diagram models system organizations and rela-
tionships between them and other system elements. Finally, the role diagram is
responsible for modeling relationships between roles defined in organizations.L

To address variability in MAS-ML diagrams, we have adopted four different
adaptations: (i) use of �kernel� , �optional� and �alternative� stereotypes
to indicate variability; (ii) model elements are colored according to the feature
they are related to, based on the color assigned for each feature; (iii) model each
feature in a different diagram. However, crosscutting features impact in several
features, so their specification is spread in other features’ diagrams. Although
crosscutting features are not modeled in specific diagrams, the use of colors helps
to distinguish different model elements related to them; and (iv) the introduction
of the capability [20] concept to modularize variable parts in agents and roles.
A capability is essentially a set of plans, a fragment of the knowledge base and a
specification of the interface to the capability. Capabilities have been introduced
into some MASs as a software engineering mechanism to support modularity
and reusability. We represent a capability in MAS-ML by the agent or agent
role notation with the �capability� stereotype. An aggregation relationship is
used between capabilities and agents, and capabilities and roles.

Figures 3(a), 3(b) and 3(c) show the Assign Papers class, role and organiza-
tion diagrams, respectively. In these diagrams, there are colored elements, which
are related with the Assign Papers feature. It means that if this feature is se-
lected for a product, the colored elements will be part of the derived product.
Most of variable parts in these diagrams are encapsulated into capabilities. For
instance, in Figure 3(b) (Role Diagram), most of the colored elements are ca-
pabilities that define parts of the Chair and CommitteeMember roles and a role
(DeadlineMonitor) that are specific for Assign Papers feature. Therefore, the
Chair role in a product will aggregate a set of capabilities that are related with
the selected features of a product.

Agents’ dynamic behavior is modeled by means of extended sequence dia-
grams by MAS-ML. The extended version of this diagram represents the inter-
action between agents, organizations and environments. The only differences in
modeling dynamic behavior for single systems and MAS-PLs are: (i) different
features are modeled in different diagrams; and (ii) UML 2.0 frames are used to
indicate a behavior related to a crosscutting feature, as it was done in the Role
Identification activity (Section 3.3).

www.manaraa.com

136 I. Nunes et al.

Besides modeling agents with appropriate feature modularization and vari-
ability notations, the Feature/Agent Dependency model is refined by introducing
new agent concepts that were identified in Agents Modeling and Agent Society
Modeling activities. This model indicates which design elements should be se-
lected during the product derivation process, i.e. which elements must me present
in a product according to a selected set of features. Figure 3(d) shows a partial
view of the EC Feature/Agent Dependency model.

3.5 Domain Realization

The purpose of the Domain Realization phase is to implement the reusable
software assets, according to the design diagrams. In addition, it incorporates
configuration mechanisms that enable the product instantiation process. Two
activities compose this phase: Agent Implementation Strategy Description and
Assets Implementation.

Implementing software agents is usually accomplished by the use of agent plat-
forms, such as JADE, whose the two main provided concepts are agent and behav-
iors, and Jadex, which implements the BDI architecture, providing goal, belief and
plan concepts. Consequently, there are different ways of implementing agents. In
addition, there may be a gap between the design and the implementation, i.e. the
concepts adopted to model the MAS-PL may be different of the ones provided
by the target implementation platform. So, the goal of the Agent Implementation
Strategy Description activity is to define a strategy for implementing agents. For
instance, mapping agent concepts used at the design phase (agents, beliefs and
plans) to object-oriented concepts (classes, attributes and methods).

In the Assets Implementation activity, designed elements are codified in some
programming language. So, the first task of this activity is to implement MAS-PL
assets. Different implementation techniques can be used to modularize features
in the code, e.g. polymorphism, design patterns, frameworks, conditional compi-
lation and aspect-oriented programming. These techniques are the typical ones
used in SPLs. In [21], we presented a quantitative study of development and
evolution of the EC MAS-PL, consisting of a systematic comparison between
two different versions: (i) one version implemented with object-oriented tech-
niques and conditional compilation; and (ii) the other one using aspect-oriented
techniques. Additionally, in [22], we have proposed an architectural pattern to
integrate software agents and web applications in a loosely coupled way.

As stated previously, the target implementation platform may force trans-
forming some design elements into platform specific ones. Hence, it is neces-
sary to specify how the design elements were implemented in the selected agent
platform for traceability purposes. The Design/Implementation Elements Map
is responsible for providing this information. It defines which elements imple-
ment which design elements. Figure 3(e) presents a partial view of this model
for the EC, showing which classes implemented the UserAgent, for instance.
With the information provided by the traceability models, it is possible to know
how a feature is implemented along the MAS-PL. The Feature/Agent depen-
dency model maps features to design elements, and the Design/Implementation

www.manaraa.com

On the Development of Multi-agent Systems Product Lines 137

(a) Class Diagram

(b) Role Diagram

(d) Feature/Agent
Dependency (Refined)

(c) Organization Diagram

(e) Design/Implementation
Elements Map

.java .xml

Classes Jadex ADFs

(f) Source Files

Fig. 3. EC Design Work Products (Partial)

www.manaraa.com

138 I. Nunes et al.

Elements Map provides the information of which design elements are related with
implementation elements. Therefore, traceability models provide the configura-
tion knowledge necessary to derive a product given an instance of the feature
model. This traceability is illustrated by the red arrows in Figure 3.

4 Conclusions and Future Work

In this paper, we have proposed a domain engineering process for developing
MAS-PLs. Using a SPL approach for building MASs allows meeting the need
of producing software with mass customization while taking advantage of agent
abstraction to model modern software systems that tend to be situated, open,
autonomous and highly interactive. Our process was modeled according to SPEM
and includes specific activities and work products to address agent features and
their traceability, and also provide notations for documenting agent variabil-
ity. It was also defined based on existing good practices of existing SPL and
MAS approaches: PLUS provides notations for documenting variability; PASSI
methodology diagrams are used to specify agent features in the Domain Anal-
ysis phase; and MAS-ML is the modeling language used in the Domain Design
phase. A new contribution of our approach resides in the fact that we com-
pletely separate the modeling of agent features. Therefore, it makes it possible
to evolve existing systems developed with different technologies to incorporate
new features that take advantage of agent abstractions.

Our process has emerged based on the experience of development of two web-
based MAS-PLs: the ExpertCommittee (presented in this paper) and the OLIS
[22] case study, which is a SPL of web applications that provide personal services
to users. In addition, the process was used in a graduate Agent-oriented Software
Engineering course at PUC-Rio in order to provide further evaluation of the
approach. This experience provided us feedback to improve our process, mainly
with notations for crosscutting features. However, we have observed that it would
be interesting to investigate how to integrate our approach with application
engineering tools in order to allow an automatic product derivation. In addition,
the variability information is present in several models, and this may lead to
inconsistencies among models during the evolution of the MAS-PL. Therefore,
we aim at providing means to manage the consistence among these models.

We are currently developing other case studies to evaluate our process. In
addition, we are investigating how model-driven and aspect-oriented approaches
can help to model and implement crosscutting features to provide for a better
modularization. Finally, we aim at extending our process to address other agent
characteristics, such as self-* properties. Future work also includes experimental
studies in order to better evaluate our process.

References

1. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. JAAMAS 9(3) (2004)

2. Muthig, D., Atkinson, C.: Model-driven product line architectures. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 110–129. Springer, Heidelberg (2002)

www.manaraa.com

On the Development of Multi-agent Systems Product Lines 139

3. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley, Reading (2004)

4. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Paech, B., Wust, J., Zettel, J.: Component-based product line engi-
neering with UML. Addison-Wesley, Reading (2002)

5. Cossentino, M.: From Requirements to Code with the PASSI Methodology, ch. IV.
Idea Group Inc., USA (2005)

6. da Silva, V.T., de Lucena, C.J.P.: From a conceptual framework for agents and
objects to a multi-agent system modeling language. JAAMAS 9(1-2) (2004)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2002)

8. Girardi, R.: Reuse in agent-based application development. In: SELMAS 2002
(2002)

9. Nunes, I., Nunes, C., Kulesza, U., Lucena, C.: Documenting and modeling multi-
agent systems product lines. In: SEKE 2008, pp. 745–751 (2008)

10. Peña, J., Hinchey, M.G., Ruiz-Cortés, A., Trinidad, P.: Building the core architec-
ture of a NASA multiagent system product line. In: Padgham, L., Zambonelli, F.
(eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 208–224. Springer, Heidelberg
(2007)

11. Dehlinger, J., Lutz, R.R.: A Product-Line Requirements Approach to Safe Reuse
in Multi-Agent Systems. In: SELMAS 2005. ACM Press, New York (2005)

12. Nunes, I., Nunes, C., Kulesza, U., Lucena, C.: Developing and evolving a multi-
agent system product line: An exploratory study. In: Luck, M., Gomez-Sanz, J.J.
(eds.) AOSE 2008. LNCS, vol. 5386, pp. 228–242. Springer, Heidelberg (2009)

13. Ciancarini, P., Nierstrasz, O., Tolksdorf, R.: A case study in coordination: Confer-
ence management on the internet (1998),
http://www.cs.unibo.it/cianca/wwwpages/case.ps.gz

14. Nunes, I.: A domain engineering process for mas-pls (2008),
http://www.inf.puc-rio.br/~ionunes/maspl/

15. Object Management Group (OMG): Software & Systems Process Engineering
Metamodel specification (SPEM) Version 2.0 (2008)

16. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021,
SEI, Carnegie-Mellon University (1990)

17. Rao, A., Georgeff, M.: BDI-agents: from theory to practice. In: ICMAS 1995 (1995)
18. O’Malley, S.A., DeLoach, S.: Determining when to use an agent-oriented software

engineering paradigm. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE
2001. LNCS, vol. 2222, pp. 188–205. Springer, Heidelberg (2002)

19. Nunes, I., Kulesza, U., Nunes, C., de Lucena, C.J., Cirilo, E.: A domain analysis
approach for multi-agent systems product lines. In: Enterprise Information Systems
IV (ICEIS 2009). LNBIP, vol. 24, pp. 716–727 (2009)

20. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring bdi agents in
functional clusters. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp.
277–289. Springer, Heidelberg (2000)

21. Nunes, C., Kulesza, U., Sant’Anna, C., Nunes, I., Lucena, C.: On the modularity
assessment of aspect-oriented multi-agent systems product lines: a quantitative
study. In: SBCARS 2008, pp. 122–135 (2008)

22. Nunes, I., Kulesza, U., Nunes, C., Cirilo, E., Lucena, C.: Extending web-based
applications to incorporate autonomous behavior. In: WebMedia 2008 (2008)

http://www.cs.unibo.it/cianca/wwwpages/case.ps.gz
http://www.inf.puc-rio.br/~ionunes/maspl/

www.manaraa.com

Developing Virtual Heritage Applications as
Normative Multiagent Systems

Anton Bogdanovych1, Juan Antonio Rodŕıguez2, Simeon Simoff1,
A. Cohen3, and Carles Sierra2

1 School of Computing and Mathematics, University of Western Sydney, Australia
{anton,simeon}@it.uts.edu.au

2 IIIA, Artificial Intelligence Research Institute, CSIC,
Spanish National Research Council�

{jar,sierra}@iiia.csic.es
3 Federation of American Scientists, 1725 DeSales Street NW, Washington, DC, USA

acohen@fas.org

Abstract. The majority of existing virtual heritage applications are fo-
cused on detailed 3D reconstruction of historically significant sites and
ancient artifacts. Recreating the way of life of ancient people is only
considered by some researchers, who employ crowd simulation for this
task. Existing crowd simulation algorithms are not suitable for modeling
complex individual behaviors and role dependent agent interactions with
other participants in the Virtual World. To address this problem we sug-
gest treating 3D Virtual Worlds as Normative Multiagent Systems and
propose the Virtual Institutions Methodology to be used for design and
deployment of Virtual Worlds that require complex interactions involv-
ing both humans and autonomous agents. To highlight the usefulness of
this approach we illustrate how Virtual Institutions are employed in the
development of the Uruk prototype, which integrates 3D Virtual Worlds
and Artificial Intelligence in the domain of cultural heritage.

1 Introduction

Non-gaming Virtual Worlds such as Second Life [1] have become an important
area of research during the last few years. Many researchers stress the signifi-
cance of this technology, considering it the next stage of the World Wide Webs
evolution (Web 3.0). Gartner has predicted that the majority of the Internet
users will be participating in non-gaming Virtual Worlds in the near future [2].
Currently, millions of people spend an average of around twenty hours a week in
various Virtual Worlds [3]. Furthermore, studies in South Korea have indicated
that the majority of Koreans prefer 3D Virtual Worlds to television [4].

Two promising application domains for non-gaming Virtual Worlds are cul-
tural heritage and education. In heritage domain 3D graphics is used to recon-
struct lost sites of high historical significance. In education the interest in Virtual
� Thanks to projects JC2008-00337, TIN2006-15662-C02-01, CONSOLIDER

CSD2007-0022.

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 140–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

Developing Virtual Heritage Applications as Normative Multiagent Systems 141

Worlds is particularly strong in relation to history. In both of these domains re-
searchers are normally focused on reconstructing destroyed or damaged buildings
(e.g. the Roman Coliseum). While such an approach allows for the examining
of architectural details of the heritage site in three dimensions, it still does not
help a general observer to understand how this site has been used in the past.

Populating history or heritage oriented Virtual Worlds with avatars that be-
have similar to the ancient citizens of the reconstructed places has a potential to
provide visitors with a more engaging experience. Using human experts to con-
trol the avatars to simulate the behavior of ancient citizens is very costly, while
employing Artificial Intelligence for this task (which is a much more affordable
option) hasn’t received appropriate attention from research. The majority of
researchers that are working on populating virtual heritage sites with avatars
employ so-called virtual crowds [5] for this task. Such crowds normally consist
of a large number of autonomous agents (represented as avatars) dressed appro-
priately for the selected period of time and appearing as local citizens of the
reconstructed area. The state of the art in combining crowd simulation and 3D
heritage reconstruction can be observed via the example outlined in [5]. Here, a
3D reconstruction of the ancient City of Pompeii is “made alive” using a large
number of avatars that walk around the city avoiding collisions. While providing
a visitor with some understanding about the appearance of the ancient people,
this approach poorly elaborates on specific behavioral characteristics of those
people. The agents employed in [5] do not use the objects in the environment
and are not engaged into historically authentic interactions.

Through the use of Virtual Institutions technology [6] we intend to bring vir-
tual heritage to a new level by making it more dynamic and interactive. Instead
of just having virtual crowds walking around the city we suggest populating vir-
tual heritage sites with autonomous agents that reenact the most typical daily
activities of the reconstructed society. Creating such agents is quite a challenging
task as the degree of interaction is pretty high, the agents have to depend on
other agents, play different roles, synchronize their activities with other agents
and even solve some tasks in a teamwork manner while actively using the ob-
jects in the virtual environment. One of our research hypotheses is that for an
autonomous agent to be able to demonstrate similar complexity of actions as
ancient humans, the complexity of agent’s environment must be reduced. This
assumption is based on the suggestion made by Russell & Norvig that the agents
ability to successfully participate in some environment and extend its intelligence
there is highly dependent on the complexity of this environment [7]. It is sug-
gested that situating the agent in a fully observable, deterministic and discrete
environment helps the agent to tackle the famous frame problem of AI [8].

As an example of a fully observable, deterministic and discrete environment,
we consider Virtual Institutions [6] (previously known as 3D Electronic Institu-
tions), which are 3D Virtual Worlds with normative regulation of participants’
interactions. In Virtual Institutions the environment is formalized in terms of
norms of acceptable behavior of participants, interaction protocols and role flow
of participants. Every agent has access to this formalization, which helps it to

www.manaraa.com

142 A. Bogdanovych et al.

reason about its own actions and the actions of other participants (either hu-
mans or agents) as well as to understand the consequences of these actions. The
Virtual Institutions technique that we employ for such environment formaliza-
tion is based on Electronic Institutions [9] widely used in Multiagent Systems
for structuring the interactions of the agents participating in open systems.

Overall, the Virtual Institutions approach to the development of applications
for virtual heritage is to treat 3D Virtual Worlds as Normative Multiagent Sys-
tems. Our work builds on top of the research published in [10]. The original
methodology presented in [10] has been applied to a real world problem and, as
a result of this, was revised. The updated methodology includes new steps and
also features a detailed explanation of the first two steps. The most significant
contribution of this paper is providing the evaluation of the Virtual Institutions
methodology by developing a prototype in the domain of cultural heritage.

The remainder of the paper elaborates on the details of the contributions
presented above. In Section 2 we describe the concept of Virtual Institutions, the
corresponding methodology and technology. Section 3 provides the motivation
for using Virtual Institutions in the domain of cultural heritage, illustrates the
application of the Virtual Institutions methodology to this domain and outlines
all the development steps. Finally, Section 4 presents some concluding remarks.

2 Virtual Institutions

We consider Virtual Institutions [6] being a new class of Normative Virtual
Worlds, that combine the strengths of 3D Virtual Worlds and Normative Mul-
tiagent Systems, in particular, Electronic Institutions [9]. In this “symbiosis”
the 3D Virtual World component spans the space for visual and audio presence,
and the normative component takes care of enabling the formal rules of interac-
tions among participants. Through the normative component a Virtual World
is separated into a number of logical spaces (scenes). Only participants playing
particular roles are admitted to a scene and can change the state of this scene.
Once admitted the participants should follow the interaction protocol specified
for each scene and are unable to violate this protocol. The institution doesn’t
take away an agent’s autonomy by forcing it to act in a specific manner, but
restricts it by prohibiting to violate the institutional rules and enforcing a par-
ticular interaction protocol in every scene.

As a benefit of this approach the agents’ possible actions are clearly defined
and comprise a finite set. Moreover, applying such restrictions helps to formalize
the environment so that every action of any participant (human or agent) and
its consequences can be sensed and formalized for every agent.

2.1 Virtual Institutions Methodology

The Virtual Institutions methodology [10], outlined in Fig. 1 a), covers the entire
development process. Its application requires 7 steps to be accomplished:

www.manaraa.com

Developing Virtual Heritage Applications as Normative Multiagent Systems 143

1. Eliciting Specification Requirements.
2. Specification of an Electronic Institution.
3. Verification of the specification.
4. Automatic Generation of the corresponding 3D environment (if needed).
5. Annotation of the Electronic Institution specification with components of

the 3D Virtual World.
6. Integrating the 3D Virtual World into the institutional infrastructure.
7. Enabling Implicit Training

One of the key contributions of this paper is the description of the methods that
should be utilized on steps 1 and 2 of the methodology – as outlined in Fig. 1 b).
Therefore, here we elaborate on these steps, while referring to the initial work
published in [10] for the detailed description of other steps.

Step 1. Eliciting Specification Requirements. This step of the methodology
aims at producing the Software Requirements Document where the key activities,
roles of the participants, and basic scenarios are outlined. Upper part of the Fig. 1
b) presents the details of this step. The key task here is enforcing institution
designers to provide an answer to the following core issues regarding a virtual
institution: where is it situated (environment), what is it designed for (social
goals), how it is expected to succeed (abstract norms), which social roles are
required to enact it and how can participants interact (ontology).

Ontology

Social
Goals

Environment

Abstract Norms Roles

Performative
Structure

Interaction
models

Concrete
Norms and
Constraints

Social
Model

Ontology and
Information

ModelSp
ec

ifi
ca

tio
n

E
lic

iti
ng

 S
pe

ci
fic

at
io

n
R

eq
ui

re
m

en
ts

EI
Specification

a) b)

Fig. 1. Virtual Institutions Methodology

www.manaraa.com

144 A. Bogdanovych et al.

1.1 Environment. Firstly, a system architect must consider where the resulting
system is to be deployed, in which physical and social environment it has to
perform its activities, what are the factors that will affect its behaviour that it
can or cannot control? We take the stance that all objects in the environment
are beyond the complete control of the institution to be defined. Agents will
interact with that environment by observing and by affecting those objects in
some way. In order to cope with the mentioned lack of control we will assume
that all of them are agentified and that the perception and action upon them
is always dealt with in the context of a dialogue with the agent that wraps them.
1.2 Ontology. To define institutional norms we must express normative behaviour
in some language, which in turn requires the definition of some ontology, namely
the definition of what agents are going to talk about. The ontology can be rep-
resented as a set of concepts and relations among them. The ontology has also
to accommodate the objects already found when specifying the environment.
1.3 Social goals. Typically institutions are regulated environments where humans
interact to attain some global objectives, which we call social goals. An institu-
tion aims at continuously satisfying its social goals and will not allow any agent
to behave in a way that prevents from attaining them. The specification of so-
cial goals (e.g. in first-order logic or natural language) must employ the ontology
defined in the previous step. The output of this step is a list of social goals.
1.4 Roles. Next, we identify the roles (patterns of agent behaviour) in the in-
stitution, which are determined to a large extent by the social goals. What the
institution aims at achieving indicates which capabilities and behaviours are
needed. Roles, at this stage, are a set of identifiers with some associated capa-
bilities expressed as the message types (i.e. ontology terms) the role is capable
of dealing with. The output of this step is a list of roles and their capabilities.
1.5 Abstract norms. The idea of an abstract norm is that of expressing a generic
restriction on how the agents incarnating the identified roles should behave.
The roles and the ontology previously analysed provide the language needed to
write the expressions of the abstract norms. To avoid any confusion, the designer
should clearly distinguish between abstract norms and social goals because ab-
stract norms are assumed to refer to the behaviour of the agents, and not to
the ultimate purpose of the institution, which is represented by the social goals.
Abstract norms cannot prevent agents from satisfaction of any social goal. The
output of this step is a list of abstract norms.

Step 2. Specification. This step establishes the regulations that govern the be-
havior of the participants. This process is supported by ISLANDER [11], which
permits to specify most of the components graphically, hiding the details of the
formal specification language and making the specification task transparent. The
details of this methodology step are outlined as a number of substeps in the lower
part of Fig. 1 b) that we detail below.
2.1 Social model. The initial task of the system architect is enriching the role
model by adding further information to turn it into a social model. A distinction
between internal and external roles must be made. Roles whose raison-d’être is

www.manaraa.com

Developing Virtual Heritage Applications as Normative Multiagent Systems 145

to support the achievement of the social goals and to enforce the norms will be
marked as internal roles and the rest as external roles. The following relation-
ships between the roles relevant for the institution are specified: (i) hierarchy,
(ii) ssd, static separation of duties, and (iii) dsd, dynamic separation of duties.
2.2 Performative structure. Next the definition of the set of dialogical activities
permitted for different roles entails a sequence of substeps:

1. Starting from the abstract norms, the designer must define a list of scenes
(activities in the institution) along with their participating roles.

2. For each scene in the list, its creation conditions (i.e. which role(s) initiates
the scene), and whether it can be multiply enacted or not must be specified.

3. Based on the abstract norms, the designer gathers together scenes into a
performative structure by specifying: (i) the flow of agent roles, namely which
roles from which scenes can get into other scenes; (ii) the role change policy,
namely whether agents are allowed to change roles when moving out of a
scene into another scene. The result is a graph connecting scenes whose edges
are labelled with expressions encoding the role flow and role change policies.

2.3 Interaction model. Once the performative structure is defined the designer
must associate some interaction model to each scene, namely a specification of
the dialogue in the scene (v.g. through a finite state machine). An interaction
model must contain the conversation states, the illocutions exchanged between
agents that permit transitions between conversation states, and the constraints
that restrict these transitions. Moreover, this substep also requires to set the
minimum and maximum number of agents playing each role allowed in the scene
as well as the conversation states where new agents are permitted to join and
participating agents are permitted to leave. Sometimes, when going through this
step, we may identify new roles and thus a revised version of the social model
is intermingled with this substep. Moreover, we may also identify refinements in
the ontology that help us better express the constraints restricting transitions.
This substep and the next one are very interrelated.
2.4 Concrete norms and constraints. A further refinement still applies to the per-
formative structure and its scenes’ interaction models. Back to the abstract
norms, we may find that some of them can be translated into simple constraints
that will limit agents in two ways: (i) by not permitting them to say certain things
(by adding a constraint into some interaction model); and (ii) by not permitting
them to move to a certain scene (by adding a constraint into the performative
structure). Some abstract norms, however, will require a more sophisticated rep-
resentation because the effect of an agent action (illocution) implies that certain
other action(s) is actually done.
2.5 Ontology and information model. Finally, from the initial ontology definition
and the concrete messages as expressed in the different interaction models of the
institution, the ontology can be completed. Further analysis of the social model,
and the specification of the performative structure and its scenes’ interaction
models helps to complete the identification of the attributes (along with their
types) of: roles, objects in the environment, scenes, and the insitution itself.

www.manaraa.com

146 A. Bogdanovych et al.

Step 3. Verification. One of the advantages of the formal nature of the Vir-
tual Institutions methodology is that the specification produced on the previous
step can be automatically verified for correctness by ISLANDER [11]. The tool
verifies the scene protocols, the role flow among the different scenes and the cor-
rectness of norms (see [10] for details). If any errors are found, developers must
return to step 1 to correct those. If the specification contains no errors, there
are two options. If the 3D Visualization of the environment is already created
(reuse of the existing design) then the developers may skip the next step and
continue with Step 4. Otherwise, the generation step, Step 3, should be executed.

Step 4. Automatic Generation. In some cases it is desirable to generate the
initial skeleton of the Virtual World from the specification. In such cases the
Virtual World can be generated automatically using the method presented in
[12]. The resulting Virtual World has to be annotated on Step 5.

Step 5. Annotation. The Specification defines the rules of the interaction and
has nothing to say about the appearance of the specified elements. On step 5 the
specification is enriched with appearance related graphical elements. These ad-
ditional elements include textures and 3D Objects like plants, furniture elements
etc. This step of the methodology does not usually require the involvement of
the system architects and should rather be executed by designers and software
developers. After this step the user can return to Steps 1 and 2 to refine the
specification requirements or the specification itself or can continue with Step 6.

Step 6. Integration. On the integration step the execution state related com-
ponents are specified. This includes the creation of the set of scripts that control
the modification of the states of the 3D Virtual Worlds and mapping of those
scripts to the messages, which change the state of the Electronic Institution.
After this step the user can return to Steps 1 and 2 to refine the specification
requirements or the specification itself or can continue with Step 7.

Step 7. Enabling Implicit Training. Having the complete formalization of
the agent environment makes it possible to use imitation learning as a key tech-
nique for achieving human-like behavior of the agents. The institutional spec-
ification forms the basis for the decision graph of the agent, where possible
illocutions become the nodes of this tree (see [13]). On Step 7 for each of those
nodes we specify whether implicit training is conducted or not.

2.2 Deployment

A virtual institution is enabled by a three-layered architecture presented by con-
ceptually (and technologically) independent layers [6]. The Normative Control
Layer employs AMELI [14] to regulate the interactions between participants by
enforcing the institutional rules. The Communication Layer causally connects
the institution dimensions with the virtual world [6]. The Visual Interaction
Layer (currently supported by Second Life [1]) visualizes the Virtual World.

www.manaraa.com

Developing Virtual Heritage Applications as Normative Multiagent Systems 147

3 City of Uruk: Virtual Institutions in Cultural Heritage

Uruk [15] is a joint research project between the University of Western Sydney
and the Federation of American Scientists. The aim of the project is to recreate
the ancient city of Uruk from the period around 3000 B.C. in the Virtual World of
Second Life letting the history students experience how it looked like and how its
citizens behaved in the past. The Virtual World of Second Life provides a unique
collaborative environment for history experts, archaeologists, anthropologists,
designers and programmers to meet, share their knowledge and work together on
making the city and the behavior of its virtual population historically authentic.

3.1 Significance of Uruk

Uruk was an ancient city located in present day Iraq (circa 250 km south of
Baghdad). Many historians consider Uruk being one of the first human built
cities on Earth. By 2900 B.C. Uruk is believed to be one of the largest settlements
in the world and one of the key centers of influence of the Sumerian culture.
Uruk played a major role in the invention of writing, emergence of urban life and
development of many scientific disciplines including mathematics and astronomy.

3.2 The Prototype

The prototype aims at showing how to enhance the educational process of history
students by providing them with a possibility to immerse into an accurate replica
of the daily life of the ancient citizens of Uruk and gain quick understanding of
the advance of technological and cultural development of ancient Sumerians.
Ultimately, the students may become part of the virtual society and will have
to interact with agents and other humans to solve the assigned tasks.

The 3D reconstruction of the city was produced within the Virtual World of
Second Life based on the results of archeological excavations and available writ-
ten sources. Both modeling of the city and programming of the virtual humans
populating it were conducted under the supervision of subject matter experts.

We have selected fishermen daily life of ancient Uruk to illustrate how Virtual
Institutions can enable immersive experience in the life of ancient societies. We
created four agents that represent members of two fishermen families (see Fig. 2
and Fig. 3). Each family consists of a husband and wife. Every agent has a unique
historically authentic appearance and is dressed appropriately for 3000 B.C.

Each of the agents enacts one of the four social roles. Agent Fisherman1 plays
the “SpearOwner” role. He is the young male fisherman. He possesses the fishing
spear and is capable of catching the fish with it. He and his brother also jointly
own a fishing boat. His daily routine consists of waking up on the roof, having
a morning chat with fisherman 2, fishing, bringing the fishing gear back home
and climbing back on the roof to sleep.

Wife1 Andel enacts the “WaterSupplier” role. She is the young wife of Fish-
erman1, who is responsible for collecting water from the well. Her daily routine
consists of waking up on the roof, collecting the water from the well, doing house

www.manaraa.com

148 A. Bogdanovych et al.

Fig. 2. Fisherman Family 1: Fisherman1 Andel and Wife1 Andel

Fig. 3. Fisherman Family 2: Wife2 Jigsaw and Fisherman2 Jigsaw

work and climbing back on the roof to sleep there. As any other typical fisherman
wife in Uruk she does not have any recreation time and is constantly working.

Agent Fisherman2 is the older brother of Fisherman1 playing the social role
“BoatOwner”. He lives with his wife in the separate house next to his brother.
Both families are very close and spend most of their day together. Fisherman2
possesses a fishing basket and paddles for rowing the fishing boat. His daily rou-
tine consists of waking up on the roof, having a morning chat with Fisherman1,
fishing, bringing the fishing gear back home and climbing on the roof to sleep.

Wife2 Jigsaw, the wife of Fisherman2, plays the “FireKeeper” role. She is
older than Wife1 and, therefore, is the key decision maker for controlling the in-
tegrity of both households. She makes fishing baskets and trades them for other
household items. Starting the fire and preparing food are her direct responsi-
bilities. Her daily routine consists of waking up on the roof, starting a fire for
cooking, routine house work and climbing back on the roof to sleep there.

The agents literally “live” in the virtual world of Second Life. Their day is
approximately 15 minutes long and starts with waking up on the roof of the
building – Fig. 4 a). Although, most of the buildings in Uruk had ventilation
holes the temperatures inside (especially during summer) could become quite

www.manaraa.com

Developing Virtual Heritage Applications as Normative Multiagent Systems 149

Fig. 4. The City of Uruk Prototype

unpleasant and most of the citizens would prefer sleeping on the roof top in
the evening, where it would have been much cooler. The wives wake up first to
collect some water from the well and prepare breakfast for their husbands. The
husbands start their day with a morning chat while waiting for the breakfast to
be prepared.

After breakfast the fishermen would collect their fishing gear and walk towards
the city gates – Fig. 4 b). Outside the gates on the river bank they find their
boat which they will both board and start fishing. One of the agents would be
standing in the boat with a spear trying to catch the fish and the other agent
would be rowing. Fig. 4 c) illustrates the fishing process.

After fishing, the men exit the boat, collect the fishing basket and spear and
bring them back to their homes. This daily cycle is then continuously repeated
with slight variations in agent behavior.

3.3 Development of the Prototype

The Virtual Institutions Methodology was employed for the development of the
prototype. Here we provide a step-by-step description of how it was followed.

Step 1: Eliciting Specification Requirements. In order to come up with
realistic specification requirements the system developers have conducted joint
meetings with 2 subject matter experts. The decision on the roles of participants,
scenes they can participate in and interaction protocols have been identified
through conversations with subject matter experts. It was agreed that having
four agents in the system is sufficient for the first prototype. The roles of these
agents are: two fishermen and two fishermen wives. The identified scenes that
must be present in the environment are: Home1, Home2, FirePlace, Well, Chat
and Fishing. Below we provide a fragment of the resulting Software Requirements
Document produced as the result of applying this step of the methodology.

Environment contains: boat, house, well, fire, spear, fish, river, fishing basket.

Ontology Relationships. River has fishes, baskets contain fishes, men own boats.

Social goals. Daily provision of food to cater for the city’s needs.

www.manaraa.com

150 A. Bogdanovych et al.

Abstract norms. Fishermen must go daily fishing for a limited number of hours;
The number of fishing baskets per household is limited to avoid overexploitation
of natural resources; Women are in charge of housework; Men alone cannot go
fishing; Fishing is not allowed at night; Hoarding is prohibited and punished; All
men under some age are obliged to fish;

Social model. Fishermen are in static separation of duties with wives.

Performative structure. Fishermen wake up, chat, fish, eat, sleep, and back again.
Wives wake up, set up a fire, collect water, cook, sleep, and back again.

Interaction model. Description of fishing. At least 2 men on a boat. When both
men on a boat, its state changes to “sailing”. While sailing the fishermen holding
a spear can throw it to catch fishes. If a spear gets a fish, the fisherman can
remove the fish from the spear and put it in the fishing basket. The action of
throwing the spear is an illocution, catching a fish is treated as an event generated
by the spear. The rest treated as properties of roles, spear, and fishing baskets.

Concrete norms and constraints. Men are obliged to fish under the age of 35; one
fishing basket per household max; fishing permitted between dawn and dusk; at
least 2 men in a boat; if hoarding (more than one fishing basket), fishermen can
be prohibited to go sailing for a week.

Step 2: Specification. Based on the information obtained at Step 1 the for-
mal specification of the underlying Electronic Institution was produced with
ISLANDER [11]. The first step in specifying the system corresponds to identify-
ing the social roles of the actors and the relationships among these roles. Fig. 5
illustrates the role hierarchy for our case.

Fig. 6 shows the Performative Structure of the specification. The nodes of
this graph feature the identified scenes and the arcs define the role flow of

Fig. 5. Role Hierarchy in the Uruk System

www.manaraa.com

Developing Virtual Heritage Applications as Normative Multiagent Systems 151

Fig. 6. Uruk Performative Structure

participants amongst these scenes. Arcs labelled with “new” define that the par-
ticipant with the role name appearing above the arc is initializing the scene and
no other participants can enter it before the initialization occurs. The “bumpy”
appearance of Home1 and Home2 suggests that these scenes permit multiple ex-
ecution (which in our case corresponds to having different floors in the building,
so that the agents can sleep inside their homes and on its roof).

The “root” and “exit” scenes are not associated with any patterns of behavior
and simply define the state of entrance and exit of participants into the institu-
tion. Apart from “root” and “exit” each of the scenes present in the Performative
Structure is associated with a Finite State Machine defining the interaction pro-
tocol for the participants that are accepted into the scene. In order to change
the scene state the participant has to perform an illocutionary act (by sending
a message to the institutional infrastructure).

To give an example of the scene formalization Fig. 7 outlines the scene protocol
for the Fishing scene and outlines the illocutions that change the states of this
scene. The scene protocol here defines in which sequence agents must perform the
actions, at which point can they join and leave the scene and what should they do
to change the scene state. In Virtual Institutions we consider every action that
changes the state of the institution being a speech act (text message). Every
action (i.e. grabbing an object or clicking on it) a participant performs in a
Virtual World is automatically transformed into a speech act similar to those
presented in the lower part of Fig. 7.

Once the scene is initialized its initial state becomes “W0”. While the scene is
in this state Fisherman2 and Boat can join the scene and both Fisherman1 and

www.manaraa.com

152 A. Bogdanovych et al.

Fig. 7. Fishing Scene: Interaction Protocol

Fisherman2 can leave the scene (the “Boat” joins the scene automatically once
it is activated). Fisherman1 can only enter the scene when it evolves to state
“W1” as the result of Fisherman2 informing all the scene participants that he
has successfully entered the boat. This happens once the corresponding avatar
boards the boat. After entering the boat Fisherman1 must notify the participants
about this fact so that the scene can evolve to “W2”. For this to happen the
corresponding agent must send the “f1:enterBoat” illocution to Fisherman2 and
Boat. Then Fisherman1 may request to start fishing, which would bring the scene
into “W3”. The result of this is the change of the boat property from “standing”
to “afloat”, Fisherman2 will start rowing and the boat object will move. While
in “W3” the only action that can be done is informing all the participants by
Fisherman1 that fishing is finished. When the fishing is finished Fisherman2
must return the boat to the initial poistion, park it there, drop the paddles, take
the fishing basket and exit the boat. Fisherman1 will also have to exit the boat.
No participants can leave the scene in this state and must wait until the scene
evolves to “W0”. While the scene is in “W0” again the Boat object may stop
the scene by sending the “finish” illocution. Doing so would mean deactivating
the scene and making it impossible for the participants to join it and act on it
(no participant will be able to sit inside the boat).

Similar to the Fishing scene the interaction protocols have to be specified for
other scenes present in the Performative Structure. We would like to point out

www.manaraa.com

Developing Virtual Heritage Applications as Normative Multiagent Systems 153

that the scene protocol does not define how the actual fishing should take place,
but simply provides the key states within the scene so that the agents can have
a formal understanding of the performed actions.

Step 3: Verification. This step provides the possibility to ensure that the
resulting specification is correct. ISLANDER provides an automatic way of veri-
fying the correctness of the specification as well as the error notification system.
Until the specification is error free it must be further revised in ISLANDER.

Step 4. Automatic Generation. In our case one of the system requirements
was having a historical accurate reconstruction of the city based on the results
of archaeological excavations. For such a case automatic generation is not ap-
propriate and, therefore, Step 4 and 5 have been skipped. The 3D design of the
city of Uruk was created manually under supervision of subject matter experts.

Step 5. Annotation. In our case the annotation step of the methodology is
not required as the 3D environment was created manually.

Step 6. Integration. At this step the dynamic objects are supplied with the
corresponding LSL (Linden Scripting Language) scripts to enable interaction
dynamics. To be able to maintain the causal connection between the institutional
state and the state of the Virtual World the actions that change the state of the
Virtual World are mapped to illocutions that change the institutional state.

Another important part of the annotation process is to associate each scene
with the corresponding subspace within the Virtual World in order to be able to
control the movement of the agents between scenes. In case of the Virtual World
of Second Life the solution for making this correspondence is to use invisible
objects tightly enclosing each given scene.

Programming the agents so that they can act in the environment and use the
institutional specification for the decision making is also done at this step.

Step 7. Enabling Implicit Training. This functionality is currently missing
in the described prototype. In the future this step will be used to let the agents
learn state transitions from human experts controlling the avatar.

The result of following the methodology is an immersive environment simu-
lating the culture of the ancient city of Uruk along the following dimensions:
environment, agents, artifacts and institutions. As our experiments have con-
firmed [16], each of these dimensions of the given culture can be successfully
learned by the end users who tested our prototype.

4 Conclusion

We have shown that virtual heritage applications that involve autonomous agents
reenacting the way of life of ancient people should be treated as Normative
Multiagent Systems. For design and deployment of such Virtual Worlds we devel-
oped the Virtual Institutions Methodology. This methodology is supplied with a
set of tools that facilitate the design, development and execution of such environ-
ments. We would like to stress that, to our knowledge, Virtual Institutions is the

www.manaraa.com

154 A. Bogdanovych et al.

first methodology that is specifically concerned with the development of Virtual
Worlds with normative regulation of interactions. To evaluate the methodology
we have applied it to the implementation of the Uruk prototype visualizing the
behavior of citizens of ancient Mesopotamia, 3000 B.C.

References

1. Linden Lab: Second Life, http://secondlife.com
2. Gartner Inc: Gartner Says 80 Percent of Active Internet Users Will Have A “Second

Life” in the Virtual World by the End of 2011 (2007),
http://www.gartner.com/it/page.jsp?id=503861 (visited 23.07.2007)

3. Hunter, D., Lastowka, F.G.: To kill an avatar. Legal Affairs (July 2003)
4. Weinstein, J., Myers, J.: Same principles apply to virtual world expansion as to

China and other new markets. Media Village (November 28, 2006),
http://www.mediavillage.com/jmr/2006/11/28/jmr-11-28-06/

5. Mäım, J., Haegler, S., Yersin, B., Mueller, P., Thalmann, D., Van Gool, L.: Pop-
ulating Ancient Pompeii with Crowds of Virtual Romans. In: 8th International
Symposium on Virtual Reality, Archeology and Cultural Heritage - VAST (2007)

6. Bogdanovych, A.: Virtual Institutions. PhD thesis, UTS, Australia (2007)
7. Russel, S., Norvig, P.: Artificial Intelligence a Modern Approach. Prentice

Hall/Pearson Education International, Upper Saddle River, New Jersey, USA
(2003)

8. Dennett, D.C.: Cognitive wheels: The frame problem of AI. In: Minds, Machines,
and Evolution: Philosophical Studies. Cambridge University Press, Cambridge
(1984)

9. Esteva, M.: Electronic Institutions: From Specification to Development. PhD the-
sis, Institut d’Investigació en Intelligència Artificial (IIIA), Spain (2003)

10. Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., Berger, H.: A methodology for
3D Electronic Institutions. In: Proceedings of AAMAS 2007 Conference, Honolulu,
Hawaii, USA, pp. 346–348. ACM, New York (2007)

11. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an Electronic Institutions editor.
In: First International Conference on Autonomous Agents and Multiagent systems,
Bologna, pp. 1045–1052. ACM Press, New York (2002)

12. Drago, S., Bogdanovych, A., Ancona, M., Simoff, S., Berger, H., Sierra, C.: From
Graphs to Euclidean Virtual Worlds: Visualization of 3D Electronic Institutions.
In: Dobbie, G. (ed.) Australasian Computer Science Conference (ACSC 2007),
Ballarat Australia. CRPIT, vol. 62, pp. 25–33. ACS (2007)

13. Bogdanovych, A., Simoff, S., Esteva, M.: Virtual institutions: Normative environ-
ments facilitating imitation learning in virtual agents. In: Prendinger, H., Lester,
J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 456–464. Springer,
Heidelberg (2008)

14. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: AMELI: An Agent-
Based Middleware for Electronic Institutions. In: Proceedings of AAMAS 2004
Conference, pp. 236–243. IEEE Computer Society, Los Alamitos (2004)

15. Uruk Project,
http://www-staff.it.uts.edu.au/~anton/Research/Uruk_Project

16. Bogdanovych, A., Rodriguez, J.A., Simoff, S., Cohen, A.: Virtual Agents and 3D
Virtual Worlds for Preserving and Simulating Cultures. In: Ruttkay, Z., Kipp, M.,
Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS, vol. 5773, pp. 257–271.
Springer, Heidelberg (2009)

http://secondlife.com
http://www.gartner.com/it/page.jsp?id=503861
http://www.mediavillage.com/jmr/2006/11/28/jmr-11-28-06/
http://www-staff.it.uts.edu.au/~anton/Research/Uruk_Project

www.manaraa.com

Part IV

State-of-the-Art Survey

www.manaraa.com

Modelling with Agents

Estefańıa Argente1, Ghassan Beydoun2, Rubén Fuentes-Fernández3,
Brian Henderson-Sellers4, and Graham Low5

1 Universidad Politécnica de Valencia, Spain
eargente@dsic.upv.es

2 University of Wollongong, Australia
beydoun@uow.edu.au

3 Universidad Complutense de Madrid, Spain
ruben@fdi.ucm.es

4 University of Technology Sydney, Australia
brian@it.uts.edu.au

5 University of New South Wales, Australia
G.Low@unsw.edu.au

Abstract. Modelling is gaining relevance in Agent-Oriented Software
Engineering (AOSE) because of two main reasons. Firstly, the conceptual
frameworks have reached a level of maturity that makes it reasonable to
devote effort to seek a consensus in modelling languages, including tool
support. Secondly, the influence of model-driven engineering emphasizes
the potential value of having models at the core of development pro-
cesses. This survey analyzes these changes in AOSE modelling languages
along three dimensions. The semantic dimension refers to the concepts
considered in the languages. The syntactic dimension covers the techni-
cal means by which languages are defined. The operational dimension
regards the use of these languages, considering both their support and
acceptance. The overall context for this discussion is the comparison of
several modern AOSE approaches.

Keywords: Multi-agent system, Model, Modelling language, Compari-
son, Semantics, Syntax, Use.

1 Introduction

Agent-Oriented Software Engineering (AOSE) [28] regards modelling as a key
task in the development of Multi-Agent Systems (MASs). It provides a variety
of supporting elements for it, such as notations, guidelines and tools. However,
the use of models in AOSE has been limited by three main factors. Firstly, the
paradigm has experienced difficulties to reach agreement on the concepts to be
considered [6]. These have been continuously evolving and have frequently been
ill-defined in the literature. Secondly, there has been a lack of suitable techniques
to handle both modelling languages (MLs) and models [38]. This has resulted
in conceptual frameworks frequently evolving more quickly than their formal
representations, thus hampering tool support for them. Thirdly, it is hard to

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 157–168, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

158 E. Argente et al.

capture application domains in models and consistently transform them into
running code [19].

Seeking to overcome these limitations, AOSE research is working in two main
directions. Firstly, the field is pursuing consensus on what the relevant concepts
for modelling a MAS are as well as their definitions. This trend can be observed
in the research on unification frameworks [1,6,33]1, mappings between notational
sets [36] and toolset comparisons [15]. The result of these efforts is expected to be
a widely accepted, stable and precisely defined conceptual framework for MAS
modelling. Secondly, AOSE is increasingly adopting Model-Driven Engineering
(MDE) [38] approaches, as it is seen in the growing number of authors who con-
sider models to be at the core of an AOSE development process [28]. This has
impact on the way we may choose to define a ML: with an increasing incorpo-
ration of metamodels and their use to generate different development artefacts;
and with a growing use of automated transformations. These kinds of approaches
are intended to favour a closer alignment between MLs, their support tools and
the code produced from models.

In order to analyze the evolution along these two research lines, this paper
considers the different aspects in the definition of a ML [29]: the semantics define
the concepts present in the ML and their meaning; the syntax comprehends the
abstract syntax, i.e. the representation of these concepts in terms of entities,
relationships, attributes and constraints, and the concrete syntax, i.e. the actual
representation of the elements of the abstract syntax, for instance with text or
graphical notations. A third aspect considered here is the context in which a ML
is used, including documentation, processes, support tools and diffusion.

The study of the previous aspects considers several recent and illustrative
AOSE MLs. Some of them are stand-alone languages while others are an inte-
grated part of an AOSE methodology. For convenience, we will use the term
“ML” irrespective of whether the ML is published independently, e.g. FAML [6],
ANote [9] and MAS-ML [39], or as part of a methodology, e.g. Adelfe [4], IN-
GENIAS [37] and Prometheus [34,35]. The evolution and inter-relationships of
all these “MLs” are depicted in Fig. 1. It can be seen that significant influences
other than within the research team are few and far between. Older approaches
such as Adelfe and PASSI have had some influence but the two most obvious
beneficiaries of earlier work are the two projects aiming to create a convergence,
FAML and the “Unifying MMM” [5]. Many methodologically-based MLs also
use elements of UML [32], AUML [3,31] or AML [8] — three languages devel-
oped in the standards arena rather than directly in the context of a specific
methodology. UML Profiles are also used, for instance in AOR’s (Agent-Object-
Relationship) ML [41]. Agent modelling is also supported in i* [43], especially
for the requirements engineering stage.

The MLs chosen for analysis in this survey are, in alphabetical order, Adelfe
[4], FAML [6], INGENIAS [37], O-MaSE [14], PASSI [10], Prometheus [34],
SODA [30] and Tropos [23] – those which, in the subjective judgement of the

1 Although the simple juxtaposition of several metamodels [5] without due regard to
ontology unification is unlikely to be successful in the long term.

www.manaraa.com

Modelling with Agents 159

Fig. 1. Temporal evolution of AOSE MLs. [Note that, for space limitation reasons, not
all elements in this diagram are cited or discussed in the text.]

authors of this paper, have not only a history but a potential evolution. We
specifically exclude MLs for mobile agents – see for example the UML/AUML
extensions discussed in [25].

The rest of the paper is organized as follows. The next three sections analyze
AOSE MLs along the three previously described dimensions: semantic (see Sect.
2), syntactic (see Sect. 3) and use (see Sect. 4). Finally, Sect. 5 discusses some
trends in agent-oriented modelling based on the analysis in the previous sections.

www.manaraa.com

160 E. Argente et al.

2 Semantic Perspective

The semantics of a ML [29] describes the intended understanding that its de-
signers try to communicate to their users. This review adopts a translational
semantics, so it considers the semantics of the different languages in terms of
the translation of their concepts to a common conceptual framework.

The chosen conceptual framework consists of three levels [6]: the system level
considers the overall organization of the MAS; the agent level the perspective of
individual agents; and the environment level refers to the context of the MAS
beyond its boundaries. The analysis of these levels can be organized by applying
the dimensions identified for organizations in [11]: structural, which describes
the entities in a given level; functional, which details the capabilities of the
elements; dynamical, which considers the interactions between the elements and
their effects; and normative, which defines mechanisms used by the society to
influence its members’ behaviour and applies only to the system and agent levels.

At the system level, structural concepts include, for instance, groups, roles,
their dependencies and compatibility, and the organization topology. Functional
concepts deal with service descriptions, tasks, system requirements (both func-
tional and non-functional) and system goals. Dynamic aspects describe agent in-
teractions (using protocols and message schemata) and system evolution (mainly
dealing with descriptions of role enactment and specifications of mental state).
Finally, normative features are usually described using concepts of deontic logics,
such as obligations and prohibitions.

At the agent level, the structural dimension applies to agent descriptions and
specifications of their mental states. Its functional dimension deals with the
agents’ autonomy by means of plan and action specifications. The dynamic di-
mension considers both agent communication (i.e. features for agent interaction)
and situatedness (i.e. relation to its environment). Normative issues cover norm
acceptance together with processes to reason about norms.

The environment level includes artefacts in the environment and their rela-
tionships. It usually describes the functional perspective with methods of these
artefacts. The dynamic features indicate how to represent the changes in the
state of the artefacts and their interactions.

Table 1 summarizes the semantic comparison. It considers the suitability of the
different approaches to describe the levels and dimensions previously discussed
more than specific concepts.

The analysis shows a bias to the system level with all the approaches provid-
ing primitives for its different aspects. Only the normative issues are commonly
disregarded despite their relevance in the literature [42], although there are ex-
ceptions. OMNI [17] explicitly defines norms and contracts, and O-MaSE [14]
defines policies for role enactment, organization behaviour and reorganization.
Other recent MLs, such as MOISE+ [26] or MEnSA [1], cover the normative
dimension by means of rules describing permissions and obligations.

The description of the internals of agents has complete coverage for the struc-
tural and functional levels in these approaches. However, only five of them con-
sider the description of how these elements provide the dynamic behaviour,

www.manaraa.com

Modelling with Agents 161

Table 1. Semantic features of AOSE MLs

Semantic features Modelling languages
Adelfe FAML INGE-

NIAS
O-

MaSE
OMNI PASSI Prome-

theus
SODA Tropos

- System level
Structural

√ √ √ √ √ √ √ √ √
Functional

√ √ √ √ √ √ √ √ √
Dynamic

√ √ √ √ √ √ √ √ √
Normative

√
- Agent level
Structural

√ √ √ √ √ √ √ √ √
Functional

√ √ √ √ √ √ √ √ √
Dynamic

√ √ √ √ √
Normative
- Environment level
Structural

√ √ √ √ √ √ √ √
Functional

√ √ √ √ √ √ √
Dynamic

√

including specific support to represent elements such as triggering conditions,
exchanged information or post-conditions of the execution of tasks. The issue
of how agents internalize the norms of the society is disregarded by all the ap-
proaches. Though there is relevant research in this issue [7,12], it seems not to
have been integrated in the MLs in this survey.

The environment of a MAS is another key aspect of the paradigm [42], but
these MLs barely consider it. Most of the approaches just include a set of arte-
facts, so agents act on the environment through their methods and perceive it
through the events they produce. Only SODA [30] goes further and adds rules for
the internal behaviour, use, inspectability and malleability (i.e. dynamic adap-
tation) of these artefacts.

3 Syntactic Perspective

The syntactic dimension of the study of MLs [29] considers the ways of defining
them, with aspects such as formalisms, symbols or complexity of definitions.
AOSE uses a variety of approaches for this purpose, summarized in Table 2.

Designers can describe the syntax of a ML in three ways. They can use for-
mal approaches with different kinds of grammars (e.g. textual, iconic or graphs)
and/or metamodels. The increasing relevance of MDE tends to emphasize meta-
models as the main mechanism for this purpose [24]. The second approach is to
use documents to explain the ML, with text and examples. Thirdly, tools provide
information about MLs through their use. The only reviewed languages that use
grammars are OMNI [17] and Tropos (but only for Formal Tropos [20]), which
are related to logics. All the other approaches use metamodels and/or tools, and
have MLs that are graph-based with a graphical notation. In the case of Tropos,

www.manaraa.com

162 E. Argente et al.

Table 2. Syntactic features of AOSE MLs

Syntactic features
Modelling languages

Adelfe FAML INGE-
NIAS

O-
MaSE

OMNI PASSI Prome-
theus

SODA Tropos

- Definition means
Document

√
Tool

√ √ √ √ √ √ √
Grammar

√ √
Metamodel

√ √ √ √ √ √
- Aspects
Abstract syntax

√ √ √ √ √ √ √ √ √
Concrete syntax

√ √ √ √ √ √
Tool information

√ √ √ √ √ √
- Basic primitives
N-ary relations

√ √ √ √ √ √ √
Arbitrary attributes
Entity hierarchy

√ √ √ √ √ √
Relation hierarchy
Modularization

√ √ √ √
Diagrams

√ √ √ √ √ √ √ √ √
- Extensibility
Language

√ √ √
Process adaptation

√
Tool adaptation

√
- Processing
Usability

√ √ √ √ √ √
Scalability

√ √ √ √

it has both metamodel and grammar, but they define partly disjoint MLs. Most
approaches only have descriptions of their ML in research papers (i.e. journals
and proceedings). These are usually very condensed for space reasons, which can
make it difficult to understand them. Tropos [23] is the only approach that offers
a complete explanatory documentation of its ML, although others like Adelfe [4],
INGENIAS [37] and Prometheus [34] have partial descriptions.

All the reviewed approaches regard the abstract syntax of their ML, but only
some of them define a specific concrete syntax. For instance, PASSI [10] depicts
its concepts with an UML-like notation similar to class diagrams; FAML [6] uses
detailed English text organised in a dictionary defining and tabulating the meta-
model concepts — current work is aimed at developing a specific concrete syntax
with a graphical notation; SODA [30] defines a tabular notation. Among the lan-
guages with their own iconic concrete syntax are Adelfe [4] and Prometheus [35].
All the approaches with support tools also store tool-related information, such as
users’ preferences or workspaces. Nevertheless, this information does not appear
in the formal definition of the languages except in INGENIAS [22].

There are relevant differences in the basic primitives present in these MLs,
with some features commonly accepted while others only appear in specific

www.manaraa.com

Modelling with Agents 163

languages. For instance, few languages allow the use of inheritance to extend
their concepts and, when they allow it, it is only in a limited way. This is the
case of INGENIAS [37], where users can only extend agents, or PASSI [10], which
uses inheritance for ontologies. Another aspect is the availability of mechanisms
to structure information as a means to deal with the complexity of real specifica-
tions. These elements do not represent concepts of the paradigm (e.g. an agent
grouping goals, capabilities and knowledge), but structures with a common ob-
jective or describing an aspect of the system (e.g. the subsystem that manages
load balancing or the static view of a MAS). Diagrams are widely accepted for
this purpose, and in particular certain types of them [27]. Withal, only four MLs
out of the nine studied here offer some modularization mechanism for artefacts
in diagrams. SODA [30] only allows zooming in and out diagrams with different
levels of detail, while the remaining three approaches provide general packages.

Extensibility considers how approaches deal with the needs of evolving their
ML. This is an aspect that mature software engineering (SE) approaches include
to allow domain customization [2]. Few AOSE MLs include suitable mechanisms
for this purpose. Only Adelfe [4], INGENIAS [37] and PASSI [10] have some
kind of limited inheritance between entities. Other extensions require guidelines
on how to modify the definition of the ML and its related processes and tools.
Only INGENIAS [22] has this information available.

The definition of a ML facilitates processing its specifications when it is regu-
lar and of limited size. This is to some extent the case of Adelfe [4], O-MaSE [14],
PASSI [10] and Prometheus [35]. The availability of a rich documentation also fa-
cilitates processing, as happens with Tropos [23], which has a document describ-
ing the complete language, and INGENIAS [37], which has specific documents
about processing. Scalability refers to the organization of complex specifications
to facilitate understanding and processing. It is strongly related to the availabil-
ity of elements such as diagrams, packages or imports of partial specifications.
Only OMNI [16] offers a truly scalable approach due to its neat separation of
concerns and the explicit traceability between elements in its specifications.

4 Operational Perspective

The utility of a ML is not only a matter of providing suitable concepts and
representations for them. In the context of modern SE, engineers demand com-
plementary resources that help them in learning and applying a ML. Table 3
summarizes some of these aspects.

In the context of MLs, development processes describe modelling tasks, guide-
lines to use their models and participant roles. Most of the reviewed MLs have
such related processes. The only exception is FAML [6], which currently only de-
fines the metamodel of its language. The processes related with the other MLs
focus on the analysis and design stages. Only OMNI [16] and Tropos [23] include
suitable support for requirements elicitation (e.g. specific modelling primitives
and verification techniques), though others, such as Adelfe [4] and INGENIAS
[37], include at least use cases for this task. Despite the claim of supporting

www.manaraa.com

164 E. Argente et al.

Table 3. Operational features of AOSE MLs. [Note that FAML is the only pure ML,
unless the other approaches that are complete AOSE methodologies].

Operational features
Modelling languages

Adelfe FAML INGE-
NIAS

O-
MaSE

OMNI PASSI Prome-
theus

SODA Tropos

- Process
Elicitation

√ √
Analysis

√ √ √ √ √ √ √ √ √
Design

√ √ √ √ √ √
Implementation

√ √
Testing

√ √ √ √
- Tools
Modelling

√ √ √ √ √ √ √
Model manipulation

√ √
Coding

√
Verification

√ √ √
Documentation

√
- Documentation
Manuals

√ √ √ √ √ √
Case studies

√ √ √ √ √ √
Projects
- Acceptance
External research

√ √ √ √
Industrial use

implementation (i.e. coding) of many approaches, their support is usually poor.
Only INGENIAS includes a detailed description on how to perform the MAS
implementation together with abstractions and tools needed to facilitate it; nev-
ertheless, others such as Adelfe, O-MaSE [14,21] (as it extends MaSE [13]) and
Prometheus [34,35] provide some less elaborated support. Finally, Adelfe, IN-
GENIAS, O-MaSE and Tropos include some guidelines to test artefacts of the
development, such as documentation, requirements or code.

The complexity of current developments also requires tools to accomplish their
tasks. Most of the MLs considered here have related tools [15], as all but FAML
are linked to development methodologies. The functionality and extensibility
of these tools vary widely: all of them support modelling, but few allow using
the models as the basis for other tasks such as verification or coding. Some of
them can be extended to cover these needs, though it is not a trivial task. For
instance, this is the case of the tools of Adelfe [4], INGENIAS [37], O-MaSE [21],
OMNI [18] and Tropos [23]. The extension commonly consists in programming
new modules for the tool, a task that only INGENIAS documents properly.

Documentation is another aspect to consider about MLs. Newcomers find it
difficult beginning with the agent paradigm, as it is not mainstream SE and its
approaches are frequently on the edge of research, using tools and techniques
that are not common. Thus, having a proper documentation is vital to get
adoption of these approaches. This is an aspect usually disregarded by AOSE

www.manaraa.com

Modelling with Agents 165

works beyond research papers. However, the research papers are necessary con-
densed so they do not constitute a suitable documentation for someone with-
out an extensive background in AOSE. These readers need documents such as
users’ manuals, extensive case studies, step-by-step process descriptions or get-
ting started problems, either as printed or web documents or embedded in the
tools help. Those methodologies that have been more used outside their origi-
nal groups are those with better documentation. Two approaches deserve here
special mention: Prometheus is the only one with a published book exclusively
devoted to development using it [34]; INGENIAS with extensive documentation
and training material at its website http://grasia.fdi.ucm.es/. Withal, this
documentation cannot be considered complete when comparing it with more
widespread approaches of SE such as the UML [32].

A final consideration is whether the efforts of the different approaches have been
accepted outside their originating groups. Here, the publicly available results raise
criticism about their dissemination. Only three approaches consistently report
published research with them outside their original groups, and none an indus-
trial adoption beyond research projects, to the best of our knowledge.

5 Discussion and Conclusions

The previous sections have offered an overview of the state and trends in MLs
for AOSE. Three levels have been analyzed: semantic, syntactic and operational.

The semantic analysis draws a landscape of convergence between approaches,
with a growing agreement about the key concepts of the paradigm. Differences
between approaches mainly come from their focus on specific types of MASs or
particular aspects of them. Efforts to define a unified ML for AOSE are able
to cover increasingly wide portions of different MAS models, as happens with
FAML and MEnSA. Only the normative and environment aspects of MASs still
lack suitable support in most general modelling approaches.

The syntactic analysis shows a growing acceptance of graphical MLs based on
graphs. Even approaches with a text-bias, such as those based on logics, provide
(or will provide) some graphical representation of their models. Related to this
trend, metamodels become the predominant means to define the abstract syntax
of a ML [24]. Nevertheless, there are relevant differences between approaches
about the basic modelling primitives to include in the abstract syntax, and the
use of concrete syntaxes and tool-specific information. The analysis also points
out important limitations in the mechanisms to customize MLs, which make
them rigid for non-standard uses, that is, those not similar to their case studies.

The operational analysis covers the use of these MLs. It shows an increas-
ing effort to provide MLs and development processes able to support industrial
projects. However, the publicly available results still show that AOSE approaches
need to make stronger efforts to gain adoption outside their originating groups,
in both other research groups and industry.

Aggregating the results of the three dimensions, three maturity levels can be
distinguished among approaches. A first group comprehends works that are at

http://grasia.fdi.ucm.es/

www.manaraa.com

166 E. Argente et al.

the conceptual level, providing useful insights in theoretical aspects. This group
includes FAML, OMNI and SODA. A second group includes approaches that
constitute work in progress, as they are exploring the application of research
lines in development. Here appear approaches such as O-MaSE and PASSI. The
final group comprehends several methodologies that are mature and complete
enough to be applicable in industrial developments of limited size, though they
need to overcome shortcomings in their processes, documentation and tools. This
group includes methodologies as Adelfe, INGENIAS, Prometheus and Tropos.

Acknowledgments. The authors acknowledge support from the Spanish Coun-
cil for Science and Innovation under grants CONSOLIDER-INGENIO 2010
CSD2007-00022 and TIN2008-06464-C03-01 (Agent-based Modelling and Simu-
lation of Complex Social Systems, SiCoSSys), and from the Australian Research
Council under grant DP0878172 (Ontology-based agent-oriented development
methodologies).

References

1. Ali, R., Bryl, V., Cabri, G., Cossentino, M., Dalpiaz, F., Giorgini, P., Molesini,
A., Omicini, A., Puviani, M., Seidita, V.: MEnSA Project - Methodologies for the
Engineering of complex Software systems: Agent-based approach. Technical Report
1.2, UniTn (2008)

2. Arlow, J., Neustadt, I.: UML 2 and the Unified Process. Addison-Wesley, Reading
(2005)

3. Bauer, B., Müller, J.P., Odell, J.: Agent UML:A Formalism for Specifying Multia-
gent Software Systems. International Journal of Software Engineering and Knowl-
edge Engineering 11(3), 207–230 (2001)

4. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering Adaptive Multi-
Agent Systems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini,
P. (eds.) Agent-Oriented Methodologies, pp. 172–202. Idea Group Publishing, USA
(2005)

5. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A Study of
Some Multi-agent Meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.)
AOSE 2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

6. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gómez-Sanz, J.J.,
Pavón, J., Gonzalez Perez, C.: FAML: a Generic Metamodel for MAS development.
IEEE Transactions on Software Engineering 35(6), 841–863 (2009)

7. Boella, G., van der Torre, L.: Regulative and Constitutive Norms in Normative Mul-
tiagent Systems. In: 9th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2004), pp. 255–265. AAAI Press, Menlo Park (2004)

8. Cervenka, R., Trencansky, I.: AML. The Agent Modeling Language. Birkhäuser
Verlag AG, Basel (2007)

9. Choren, R., Lucena, C.: The ANote Modeling Language for Agent Oriented Spec-
ification. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SELMAS
2004. LNCS, vol. 3390, pp. 198–212. Springer, Heidelberg (2005)

10. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and Agile PASSI
MAS Meta-Models Compared with a Unifying Proposal. In: Pěchouček, M., Petta,
P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 183–192.
Springer, Heidelberg (2005)

www.manaraa.com

Modelling with Agents 167

11. Criado, N., Argente, E., Julián, V., Botti, V.: Designing Virtual Organizations.
In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds.) 7th International
Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS
2009). Advances in Intelligent and Soft Computing, vol. 55, pp. 440–449. Springer,
Heidelberg (2009)

12. Dastani, M., Dignum, V., Dignum, F.: Organizations and normative agents.
In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510,
pp. 982–989. Springer, Heidelberg (2002)

13. DeLoach, S.A.: The MaSE Methodology. In: Bergenti, F., Gleizes, M.P., Zam-
bonelli, F. (eds.) Methodologies and Software Engineering for Agent Systems.
Multiagent Systems, Artificial Societies, and Simulated Organizations., vol. 11,
pp. 107–125. Springer, USA (2004)

14. DeLoach, S.A.: Engineering Organization-Based Multiagent Systems. In: Garcia,
A., Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SEL-
MAS 2005. LNCS, vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

15. DeLoach, S.A., Padgham, L., Perini, A., Susi, A., Thangarajah, J.: Using three
AOSE toolkits to develop a sample design. International Journal of Agent-Oriented
Software Engineering 3(4), 416–476 (2009)

16. Dignum, V., Dignum, F., Meyer, J.J.: An Agent-Mediated Approach to the Support
of Knowledge Sharing in Organizations. The Knowledge Engineering Review 19(2),
147–174 (2005)

17. Dignum, V., Vázquez-Salceda, J., Dignum, F.: OMNI: Introducing Social Struc-
ture, Norms and Ontologies into Agent Organizations. In: Bordini, R.H., Dastani,
M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI),
vol. 3346, pp. 181–198. Springer, Heidelberg (2005)

18. Dignum, V., Okouya, D.: Operetta: A prototype tool for the design, analysis
and development of multi-agent organizations. In: 7th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2008), Demo track,
pp. 1677–1678. IFAAMAS (2008)

19. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Future of Software Engineering 2007, in 31st International Conference
on Software Engineering (ICSE 2007), pp. 37–54. IEEE Computer Society, Los
Alamitos (2007)

20. Fuxman, A., Kazhamiakin, R., Pistore, M., Roveri, M.: Formal Tropos: language
and semantics, version 1.0. Technical report, University of Trento and IRST (2003)

21. Garcia-Ojeda, J.C., DeLoach, S.A.: Robby: agentTool III: From Process Definition
to Code Generation. In: 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2009), vol. 2, pp. 1393–1394. IFAAMAS (2009)

22. Garćıa-Magariño, I., Fuentes-Fernández, R., Gómez-Sanz, J.J.: A Framework for
the Definition of Metamodels for Computer-Aided Software Engineering Tools.
Information and Software Technology 52(4), 422–435 (2010)

23. Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J.: Tropos: A Requirements-Driven
Methodology for Agent-Oriented Software. In: Henderson-Sellers, B., Giorgini, P.
(eds.) Agent-Oriented Methodologies, pp. 20–45. Idea Group Publishing, USA
(2005)

24. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineer-
ing. J. Wiley and Sons, Chichester (2008)

25. Hachicha, H., Loukil, A., Ghedira, K.: MA-UML: a conceptual approach for mo-
bile agents modelling. International Journal of Agent-Oriented Software Engineer-
ing 3(2-3), 277–305 (2009)

www.manaraa.com

168 E. Argente et al.

26. Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: MOISE: An Organizational
Model for Multi-Agent Systems. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000
and IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 156–165. Springer, Heidelberg
(2000)

27. Henderson-Sellers, B.: Consolidating diagram types from several agent-oriented
methodologies. Submitted to International Journal of Agent-Oriented Software En-
gineering (2010)

28. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-oriented methodologies. Idea
Group Publishing, USA (2005)

29. Kleppe, A.: A Language Description is More than a Metamodel. In: 4th Interna-
tional Workshop on Software Language Engineering (ATEM 2007), pp. 1–9 (2007)

30. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963,
pp. 49–62. Springer, Heidelberg (2006)

31. Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for agents. In: Wagner, G.,
Lespérance, Y., Yu, E. (eds.) Agent-Oriented Information Systems Workshop, in
the 17th National Conference on Artificial Intelligence, pp. 3–17 (2000)

32. Object Management Group (OMG): OMG Unified Modeling Language (OMG
UML), Superstructure. Version 2.2. OMG (2009)

33. Object Management Group (OMG): Agent Metamodel and Profile (AMP). OMG
Initial submission, OMG document ad/2009—08–04 (2009)

34. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. J. Wiley and Sons, Chichester (2004)

35. Padgham, L., Winikoff, M.: Prometheus: A Practical Agent-Oriented Methodology.
In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp.
107–135. Idea Group Publishing, USA (2005)

36. Padgham, L., Winikoff, M., DeLoach, S., Cossentino, M.: A Unified Graphical
Notation for AOSE. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS,
vol. 5386, pp. 116–130. Springer, Heidelberg (2009)

37. Pavón, J., Gómez-Sanz, J.J., Fuentes-Fernández, R.: The INGENIAS Methodology
and Tools. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Method-
ologies, pp. 236–276. Idea Group Publishing, USA (2005)

38. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5),
19–25 (2003)

39. da Silva, V.T., Choren, R., de Lucena, C.J.P.: MAS-ML: a multiagent system mod-
elling language. International Journal of Agent-Oriented Software Engineering 2(4),
382–421 (2008)

40. Silva, V., Garcia, A., Brandão, A., Chavez, C., Lucena, C., Alencar, P.: Taming
Agents and Objects in Software Engineering. In: Garcia, A.F., de Lucena, C.J.P.,
Zambonelli, F., Zhang, S.-W., Castro, J. (eds.) Software Engineering for Large-
Scale Multi-Agent Systems. LNCS, vol. 2603, pp. 103–136. Springer, Heidelberg
(2003)

41. Taveter, K., Wagner, G.: Towards Radical Agent-Oriented Software Engineering
Processes Based on AOR Modelling. In: Henderson-Sellers, B., Giorgini, P. (eds.)
Agent-Oriented Methodologies, pp. 277–316. Idea Group Publishing, USA (2005)

42. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial In-
telligence. The MIT Press, Cambridge (2000)

43. Yu, E.S.K.: Modelling strategic relationships for process reengineering. Ph.D The-
sis. Department of Computer Science, University of Toronto, Toronto (1995)

www.manaraa.com

A Survey on the Implementation of Agent
Oriented Specifications

Ingrid Nunes1, Elder Cirilo1, Carlos J.P. de Lucena1, Jan Sudeikat2,
Christian Hahn3, and Jorge J. Gomez-Sanz4

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro, Brazil
{ionunes,ecirilo,lucena}@inf.puc-rio.br

2 Multimedia Systems Laboratory, Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

jan.sudeikat@haw-hamburg.de
3 German Research Center for Artificial Intelligence (DFKI),

Stuhlsatzenhausweg 3, 66123 Saarbrücken
Christian.Hahn@dfki.de

4 Facultad de Informática, Universidad Complutense de Madrid, Spain
jjgomez@fdi.ucm.es

Abstract. Agent literature has shown a big concern on the production
of multi-agent system specifications. Nevertheless, there has not been a
similar effort in surveying the different ways an agent oriented specifi-
cation can be transformed into the actual implementation. This survey
intends to cover this gap by pointing at concrete representative works of
different implementation approaches.

Keywords: Implementation, agent oriented specification, coding,
transformation.

1 Introduction

The survey deals with different existing approaches considered in the translation
from a Multi-Agent System (MAS) specification into code and their derived
problems, namely, obtaining code from the specification and the consistency
between both. As in the general field of software engineering, this remains a
major challenge and has motivated research lines where assisted or automated
solutions were devised.

Assisted solutions propose team work discipline (processes, guidelines) plus
support tools controlled by developers. Automatic solutions provide automatic
means to convert the specification into code and, ideally, backwards, leading to
what is known as roundtrip engineering.

In both assisted and automatic approaches, developers have to deal with the
gap between the concepts used in the specification and those the target platform
implements. When the gap is small, the transit from specification to code is
smooth and straightforward. Nevertheless, this is not the general case and de-
velopers need to find correspondences between the conceptual structures in the

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 169–179, 2011.
© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

170 I. Nunes et al.

specification and those supported by the target platform. This mapping may
require as well developing new structures over the target platform to which the
translation is more feasible.

To account for the progress made in the specification to code transition, this
work considers a selection of recent works, categorising them into assisted tran-
sition and automated transition approaches. The gap between specification and
code is briefly reviewed in section 2. Assisted translation works are presented
in section 3, while automatic translation is regarded in section 4. Finally, we
present conclusions in section 5.

2 Dealing with the Gap from Specification to Code

The implementation of a MAS specification is not straightforward most of the
times. This is mainly due to the difference between the abstractions provided
by the adopted modelling language used in the specification and the ones pro-
vided by the target implementation platform (we will assume the programming
language is determined by the chosen target platform). When transition is not
straightforward, the way to bridge the gap consists of creating mappings from
networks of concepts in the specification to code structures in the target platform
(it may be existing code structures or new ad-hoc ones). Hence, it is necessary
to discuss first what kind of structures can be found at both sides of the gap.

Recognising recurrent structures in MAS specifications and using pre-defined
solutions to implement them allows to systematize the process of implementing
a MAS. Like in conventional software engineering, this leads to the concept of
re-usability, since similar solutions can be applied to similar problems. Software
reuse provides benefits, such as increased productivity and quality, for the soft-
ware development; however there has been little research effort directed toward
adopting reuse techniques in the development of MASs [Gir02].

Intuitively, in a reusable solution, there has to be pieces of specifications that
map to pieces of code. In this survey, we focus on three ways of managing these
associations: patterns [CSC03], modularisation [BHRH00], and aspects [GL08].

Patterns refer to templates of elements to be found in a specification and their
corresponding code. In MAS, developers have to deal first with the diversity of
agent programming concepts, which interferes with the definition of reusable
pattern across programming languages and implementation platforms. Hence,
patterns have to be abstract to ensure reuse across agent platforms and pro-
gramming languages, what prevents, at the same time, to have a stable imple-
mentation reference. Nevertheless, establishing a collection of agreed patterns
may change this in this future and will force target platforms to tell how these
patterns can be implemented. An example of this ideal are FIPA protocols and
their standard implementations. FIPA defines semantic and notation for a set
of reusable protocols and, for them, one can find FIPA-compliant implementa-
tions, like JADE. Hence, in a specification, a developer can use an existing FIPA
protocol and find straightforward implementations. Nevertheless, this is not the
general case. There are authors working on the identification of meaningful

www.manaraa.com

A Survey on the Implementation of Agent Oriented Specifications 171

structures at the specification level, like inter-agent coordination schemes
[GVO07] (expressed using node-edge diagrams) [DWK01] (using UML notation)
[SR09] (using domain specific languages), or organisational structures [KGM02]
(expressed using Tropos). More coherent with the classic notion of pattern is the
work [CSC03], where patterns are treated as pieces of specification concepts and
their corresponding code, what permits a more adequate reuse across develop-
ments. The management of patterns in a specification (finding occurrences, for
instance, of patterns collected in a library), may be supported by tools imple-
menting different kinds of transformations, like those considered in section 4.

The identification of reusable structures, i.e. patterns, is closely related to mod-
ularisation and componentisation. Agent modules enable the provision of reusable
clusters of functionalities. Therefore, they allow to encapsulate and reuse pattern
realisations within a development environment as proposals for modularisation
concepts concern specific agent architectures. For BDI-like agents, Capabilities,
which contain reusable sets of beliefs, goals and plans, have been proposed. The
works [BHRH00] and in [BP07] show how interactive abilities, e.g. the participa-
tion in a contract-net protocol, can be encapsulated and reused by a goal-oriented
interface. This module concept is available in the Jack and Jadex agent platforms.
Components are more oriented towards the engineering of a system and refer to a
reusable coding element whose dependencies and internal behaviour are well de-
fined using some specification language: a component representation makes ex-
plicit what is required to make a component work. Agent literature has researched
reusable artefactswithdifferentpurposes: organisationartefacts [HBKR09] (which
are implemented with CArtAgO infrastructure [RVO06]), environments [RVO07]
(implemented with CArtAgO) [VHR+07] (review of other infrastructures), coordi-
nation in general [RV05] (implemented as TuCSON coordination infrastructure),
or facilitating cognitive processes by representing some relevant aspect of the en-
vironment [PR08] (implemented with CArtAgO and Jason).

A third possibility is using aspects. Unlike the other solutions, aspects act as
a crosscutting concern affecting different, possibly separated, architectural com-
ponents. This suits well some specification concepts that affect several elements
in the implementation. The use of aspect oriented programming for developing
MASs brings two main benefits [GL08]: modular reasoning at the architectural
level and smooth transition in software life-cycle phases. The aspectization of
agent architectures supports modular reasoning, since the architects are able to
more independently treat each agent-hood property. Aspect oriented agent archi-
tectures are directly mapped to implementation abstractions using well known
aspect oriented programming languages, such as AspectJ.

3 Assisted Translation

Assisted translation is about having one or many developers translating a MAS
specification into instructions of a programming language using guidelines or
programs that support the process. The existence of correspondences between
specification structures and code structures may reduce the effort of the MAS

www.manaraa.com

172 I. Nunes et al.

implementation. The main idea is to identify patterns, modules, or aspects in
design models, and to implement them using pre-defined solutions, which may
be available as reusable code assets in a repository.

In addition, methods and guidelines may help the developer to systematize
the coding process. In Moraitis and Spanoudakis [MS06], it is demonstrated how
systems designed following the GAIA methodology, and its corresponding mod-
els, can be converted to JADE for deployment. The Gaia2Jade Process proposes
that the implementation phase should be performed in four stages: communi-
cation protocol definition, activities refinement, JADE behaviour creation, and
agent classes construction.

The Agent-Object-Relationship Modelling Language (AORML) [Wag03] is
another proposal for modelling MAS that is mainly inspired by the Agent Ori-
ented Programming proposal of Shoham [Sho93]. A conceptual mapping between
AORML and JADE is presented in Taveter and Wagner [TW08]. This mapping
should be used by developers as guideline for obtaining the actual code. The
same occurs with the mapping between Tropos and AORML as discussed in
Guizzardi-Silva et al. [SPD03].

Role modelling [Ken99] has counted as well with the use of guidelines and pro-
gramming language specific tools. It proposes implementation of agents playing
roles using object oriented patterns, or conceiving different roles as aspects as-
sociated with the agent.

4 Automatic Translation

In the automatic translation approach, a model is processed to obtain a software
system with different degrees of operativility. Automatic translation is generally
performed by means of model transformation tools or generative programming
approach, but always assuming the existence of a modelling language.

Code generation, whether it comes from a transformation or a generative ap-
proach, has been addressed early in the world of agents, back to Zeus method-
ology [NNLC99] in 1999. Trying to focus on more recent works, a selection of
research results have been selected and classified into two broad categories: with
and without an agent oriented methodology background.

When there is an agent oriented methodology, there is a modelling language
whose use is guided by a method with the aid of development tools. Some of
these tools are intended to assist the creation of the specification while others to
process the specification, for instance, to generate a system. These tools are used
with different intentions depending on the development stage according to the
kind of products the development process demands. For instance, a developer
can expect during the implementation stage to have code generation facilities
producing the actual code of the system, while at the testing stage, the developer
wants executable code that tests the automatically generated system.

Other works start directly from an agent modelling language without a spe-
cial focus on the method. Hence, there is little concern about development stages
and a simple design-generate-code approach is followed. This simplifies the con-
struction of a code generation approach, but leaves to the developer the burden

www.manaraa.com

A Survey on the Implementation of Agent Oriented Specifications 173

of deciding how and when to apply it. In a way, this kind of works can be seen
as a germen for a future methodology.

Despite the focus, it can be appreciated that automatic translation of speci-
fication to code is strongly associated with model driven support tools. Model
Driven Development (MDD) focuses on the construction of a model of the sys-
tem and how to transform this model into source code, not just binaries. This
is the case of the Eclipse Modelling Framework, which enables the construc-
tion of meta-models and, from them, build visual editors and generate code.
Within this category fall the evolution of PDT tool [STP10], SDLMAS [CSZ09],
O-MaSE [GODR09], TROPOS [BDM+06], and DSML4MAS Development En-
vironment [WH09]. Other works prefer to reuse UML modelling tools, like the
Agent Modelling Language (AML) [CTCG04, ICG06], PASSI [Cos05], and MAS-
ML [dMdSLC05]. From these works, only INGENIAS [PGSF06] proposes custom
facilities based on the meta-modelling framework INGENME (http://ingenme.
sourceforge.net).

4.1 Agent Oriented Methodologies

In this category, five works are introduced. They are briefly presented in table 1
with special focus on the following characteristics: which one is the underlying
development method; the name of the modelling language; the name of the tool
that supports the translation and coding; and the target platform. A concrete
description of each work follows.

O-MaSE [GODR09] is an evolution of MaSE methodology that incorporates
the concept of Organisation. This evolution is supported by the editor agentTool
III. This tool permits to create the specification of the MAS and, at the same
time, transform it into executable code. The target platform is the JADE agent
platform.

Pavón et al. [PGSF06] presented an update to INGENIAS introducing the
INGENIAS Development Kit (IDK), as a way to provide Model Driven Devel-
opment tools for MAS development. It presents the IDK MAS Model Editor, a
graphical tool for MAS model creation, and a modular approach adapt the edi-
tor and tools to new metamodels or target platforms. It also proposes that the
model generation and metamodel development should be performed in parallel
with periodic consistency checks to allow feedback from one activity to the other
during the development.

Prometheus methodology permits to generate skeleton code for Jack agent
platform in the Eclipse based implementation of the PDT tool [STP10]. This
tool provides a equivalent representation of PDT concepts using Eclipse facilities
plus menu options to transform specifications into Jack agent programs.

PASSI [Cos05] proposes a step-by-step refinement from requirements to code.
The generation of the system is performed in part by the PASSI Toolkit (PTK).
The other part of code generation is responsibility of AgentFactory tool. It re-
gards code reuse in form of predefined patterns of agents and tasks. PTK com-
piles PASSI diagrams, exports the specification to AgentFactory or produces
skeleton for current agents. AgentFactory works at the pattern level by letting

http://ingenme.sourceforge.net
http://ingenme.sourceforge.net

www.manaraa.com

174 I. Nunes et al.

Table 1. Reviewed automatic code generation approaches from agent oriented
methodologies

Method Modeling Language Tool Target Platform
O-MaSE Based on O-

MaSE’s meta-
model /AUML
Interaction Dia-
grams

agentTool III JADE platform
[GODR09]

INGENIAS Based on INGE-
NIAS metamodel

INGENIAS Develop-
ment Kit (IDK)

JADE platform
[GSFPGM08]

Prometheus Prometheus Prometheus Design
Tool (PDT)

JACK [STP10]

Tropos Based on i* JADE Template Gen-
erator

JADE [BDM+06]

PASSI UML Rational Rose UML
CASE tool + add-
in supporting PASSI
(PTK) + AgentFac-
tory

JADE and FIPA-
OS [Cos05]

the developer choose among a set of predefined designs for which there is actual
code.

Bertolini et al. [BDM+06] describe how their agent-based software develop-
ment process can be performed through MDD. For this purpose, the authors
demonstrated how automatic transformations can be used to convert UML mod-
els on the various phases of the TROPOS methodology to finally maintain the
related implementation. The model transformation is defined by using Tefkat
model transformation engine.

4.2 Agent Oriented Modeling Languages

This section includes four works that mainly focus on the modeling language.
Their features are summarized in table 2. This table addresses similar charac-
teristics as in the previous section without regarding the development method.
Details of each work follow.

Agent-DSL [KGL04] is an aspect oriented modeling language that permits to
model agent features like knowledge, autonomy, adaptation, or roles. An agent
oriented specification using Agent-DSL is converted into code using an aspect
oriented agent architecture. Code generation uses Eclipse facilities to combine
the XML containing the Agent-DSL specification with some templates.

The Agent Modelling Language (AML) [CTCG04, ICG06] was designed to
address the specific qualities offered by MAS that are difficult to model with ob-
ject oriented modelling languages like UML. The authors of [CGT06] discuss an
automatic transformation that is based on a CASE modelling tool to define code
generators that translate the AML specification into code provided by the Liv-
ing Systems Technology Suite [RGK06], which is a development environment for

www.manaraa.com

A Survey on the Implementation of Agent Oriented Specifications 175

Table 2. Reviewed automatic code generation approaches for modeling languages

Modeling Language Tool Target Platform
Agent-DSL Agent AO-

Architecture Eclipse
Plug-in

- (Java and AspectJ)
[KGL04]

MAS-ML VisualAgent ASF Framework
[dMdSLC05]

SDLMAS Eclipse SDLMAS
plug-in

JADE platform
[CSZ09]

DSML4MAS DSML4MAS Develop-
ment Environment

JACK and JADE
[Hah08]

producing applications based on software agent technology. The Living Systems
Technology Suite (LS/TS) provides a Java-based foundation for the development
and operation of products and solutions based on software agent technology.

MAS-ML [dMdSLC05] is a modelling language, which extends the UML meta-
model to include agent concepts. MAS-ML specification can be transformed into
code addressing the ASF framework. The process is performed using VisualA-
gents environment. This tool has a graphical facilities for modelling; a transfor-
mation tool from the MAS-ML to UML XMI; and a code generation tool.

SDLMAS [CSZ09] is oriented towards the modeling of complex interactions.
The description of interactions is made through scenarios. Scenario description
is made using a text file, which follows the SDLMAS language conventions.
These files contains as well agent definitions, agent actions, and roles. They are
processed to produce code compatible with the SDLMAS platform, which is built
over the JADE platform. Code generation reuses Eclipse facilities to convert the
SDLMAS text file into EMF data and then to transform the EMF representation
into code.

In [Hah08], a model transformation in accordance to MDD between a meta-
model called PIM4Agents and the agent platforms JACK and JADE has been
discussed. Moreover, a formal semantics has been defined as well as a model-
driven methodology. The DSML4MAS Development Environment [WH09], a
graphical editor based on the Eclipe’s Graphical Modelling Framework, provides
a clear concrete syntax to design MAS in accordance to DSML4MAS.

5 Conclusions

This work has reviewed a number of works in recent years of research in MAS.
It surveys different ways the agent research community is addressing the spec-
ification to code transition problem. Works have been divided into two broad
categories (assisted and automatic) while some theoretical principles underlying
both approaches (structures to be mapped between the specification and the
design) were introduced.

www.manaraa.com

176 I. Nunes et al.

Readers should not assume this survey considers in detail the implementation
stage. The discussed works mainly concern the translation of agent specifications
to source code. Nevertheless, there are issues that bias an implementation that
have not been regarded. From a single specification, different implementations
are possible, but only a few will satisfy the actual requirements of a development.
The reason is that there are requirements that refer to non-functional issues, such
as security, resource usage, performance, or scalability. Finding appropriate code
structures that satisfy them adds more complexity to the specification-to-code
translation problem. Hence, they deserve attention from the developer, as well.

Acknowledgements

Jorge J. Gomez-Sanz has partially been funded by the the project Agent-based
Modelling and Simulation of Complex Social Systems (SiCoSSys), supported
by Spanish Council for Science and Innovation, with grant TIN2008-06464-C03-
01, and by the Programa de Creación y Consolidación de Grupos de Investi-
gación UCM-Banco Santander for the group number 921354 (GRASIA group).
Ingrid Nunes #141278/2009-9, Elder Cirilo #142013/2008-0, Carlos Lucena
#304810/2009-6 thank CNPq for respective research grants.

References

[BDM+06] Bertolini, D., Delpero, L., Mylopoulos, J., Novikau, A., Orler, A.,
Penserini, L., Perini, A., Susi, A., Tomasi, B.: A Tropos model-driven
development environment. In: Proceedings of the 18th Conference
on Advanced Information Systems Engineering (CAiSE 2006), Forum
Proceedings, Theme: Trusted Information Systems, Luxembourg, June
5-9. CEUR Workshop Proceedings, vol. 231, CEUR-WS.org (2006)

[BHRH00] Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring
BDI agents in functional clusters. In: Jennings, N.R. (ed.) ATAL 1999.
LNCS, vol. 1757, pp. 277–289. Springer, Heidelberg (2000)

[BP07] Braubach, L., Pokahr, A.: Goal-oriented interaction protocols. In:
Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007.
LNCS (LNAI), vol. 4687, pp. 85–97. Springer, Heidelberg (2007)

[CGT06] Cervenka, R., Greenwood, D., Trencansky, I.: The AML approach to
modeling autonomic systems. In: Proceedings of the International Con-
ference on Autonomic and Autonomous Systems (ICAS 2006), p. 29.
IEEE Computer Society, Los Alamitos (2006)

[Cos05] Cossentino, M.: From Requirements to Code with the PASSI Method-
ology, ch. IV, pp. 89–106. Idea Group Inc., Hershey (2005)

[CSC03] Cossentino, M., Sabatucci, L., Chella, A.: Patterns reuse in the passi
methodology. In: Zhang, S.-W., Petta, P., Pitt, J. (eds.) ESAW 2003.
LNCS (LNAI), vol. 3071, pp. 294–310. Springer, Heidelberg (2004)

[CSZ09] Cavrak, I., Stranjak, A., Zagar, M.: Sdlmas: A scenario modeling
framework for multi-agent systems. Journal of Universal Computer
Science (JUC.S) 15(4), 898–925 (2009)

www.manaraa.com

A Survey on the Implementation of Agent Oriented Specifications 177

[CTCG04] Cervenka, R., Trencanský, I., Calisti, M., Greenwood, D.A.P.: AML:
Agent modeling language toward industry-grade agent-based model-
ing. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 31–46. Springer, Heidelberg (2005)

[dMdSLC05] de Maria, B.A., da Silva, V.T., Lucena, C., Choren, R.: Visualagent:
A software development environment for multi-agent systems. In: Pro-
ceedings of the 19th Brazilian Symposiun on Software Engeneering
(SBES 2005), Tool Track (2005)

[DWK01] Deugo, D., Weiss, M., Kendall, E.: Reusable patterns for agent coor-
dination, pp. 347–368 (2001)

[Gir02] Girardi, R.: Reuse in agent-based application development. In: First
International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, SELMAS 2002 (2002)

[GL08] Garcia, A., Lucena, C.: Taming heterogeneous agent architectures.
Commun. ACM 51(5), 75–81 (2008)

[GODR09] Garcia-Ojeda, J.C., DeLoach, S.A., Robby: agenttool iii: from process
definition to code generation. In: AAMAS 2009: Proceedings of The
8th International Conference on Autonomous Agents and Multiagent
Systems, pp. 1393–1394. International Foundation for Autonomous
Agents and Multiagent Systems (2009)

[GSFPGM08] Gomez-Sanz, J.J., Fuentes, R., Pavón, J., Ivan, G.-M.: Ingenias devel-
opment kit: a visual multi-agent system development environment. In:
AAMAS 2008: Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1675–1676. Inter-
national Foundation for Autonomous Agents and Multiagent Systems
(2008)

[GVO07] Gardelli, L., Viroli, M., Omicini, A.: Design patterns for self-organizing
systems. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga,
L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 123–132.
Springer, Heidelberg (2007)

[Hah08] Hahn, C.: A domain specific modeling language for multiagent sys-
tems. In: Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril,
Portugal, May 12-16, vol. 1, pp. 233–240. IFAAMAS (2008)

[HBKR09] Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-
agent organisations with organisational artifacts and agents. In: Au-
tonomous Agents and Multi-Agent Systems (2009)

[ICG06] Ivan, T., Cervenka, R., Greenwood, D.: Applying a uml-based agent
modeling language to the autonomic computing domain. In: Confer-
ence on Object Oriented Programming Systems Languages and Appli-
cations, pp. 521–529. ACM Press, New York (2006)

[Ken99] Kendall, E.A.: Role modeling for agent system analysis, design, and
implementation. In: ASA/MA, pp. 204–218. IEEE Computer Society,
Los Alamitos (1999)

[KGL04] Kulesza, U., Garcia, A., Lucena, C.: Generating aspect-oriented agent
architectures. In: Proceedings of the 3rd Workshop on Early Aspects -
Aspect-Oriented Requirements Engineering and Architecture Design,
3rd International Conference on Aspect-Oriented Software Develop-
ment (AOSD 2004), Lancaster, UK (2004)

www.manaraa.com

178 I. Nunes et al.

[KGM02] Kolp, M., Giorgini, P., Mylopoulos, J.: A goal-based organizational
perspective on multi-agent architectures. In: Meyer, J.-J.C., Tambe,
M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 128–140. Springer,
Heidelberg (2002)

[MS06] Moraitis, P., Spanoudakis, N.I.: The Gaia2Jade Process for Multi-
Agent Systems Development.. Applied Artificial Intelligence 20(2-4),
251–273 (2006)

[NNLC99] Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: Zeus: A toolkit
for building distributed multiagent systems. Applied Artificial Intelli-
gence 13(1-2), 129–185 (1999)

[PGSF06] Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: Model Driven Development
of Multi-Agent Systems.. In: ECMDA-FA, pp. 284–298 (2006)

[PR08] Piunti, M., Ricci, A.: Cognitive use of artifacts: Exploiting relevant in-
formation residing in mas environments. In: Meyer, J.-J.C., Broersen,
J. (eds.) KRAMAS 2008. LNCS, vol. 5605, pp. 114–129. Springer, Hei-
delberg (2009)

[RGK06] Rimassa, G., Greenwood, D., Kernland, M.E.: The Living Systems
Technology Suite: An autonomous middleware for autonomic comput-
ing. In: Proceedings of the International Conference on Autonomic
and Autonomous Systems (ICAS 2006), Washington, DC, USA, July
16-21, p. 33. IEEE Computer Society, Los Alamitos (2006)

[RV05] Ricci, A., Viroli, M.: Coordination artifacts: A unifying abstraction
for engineering environment-mediated coordination in mas. Informat-
ica 29, 433–443 (2005)

[RVO06] Ricci, A., Viroli, M., Zhang, S.-W.: cArtAgO: A framework for proto-
typing artifact-based environments in MAS. In: Weyns, D., Van Dyke
Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389,
pp. 67–86. Springer, Heidelberg (2007)

[RVO07] Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the a&a
approach for engineering working environments in mas. In: AAMAS,
p. 150. IFAAMAS (2007)

[Sho93] Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1),
51–92 (1993)

[SPD03] Guizzardi-Silva Souza, R., Perini, A., Dignum, V.: Using intentional
analysis to model knowledge management requirements in communi-
ties of practice. Technical Report TR-CTIT-03-53, Centre for Telemat-
ics and Information Technology, University of Twente, Enschede (2003)
ISSN 1381-3625

[SR09] Sudeikat, J., Renz, W.: MASDynamics: Toward systemic modeling
of decentralized agent coordination. In: Kommunikation in Verteilten
Systemen. Informatik aktuell, pp. 79–90 (2009)

[STP10] Sun, H., Thangarajah, J., Padgham, L.: Eclipse-based prometheus de-
sign tool. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck,
M., Sen, S. (eds.) AAMAS, pp. 1769–1770. IFAAMAS (2010)

[TW08] Taveter, K., Wagner, G.: Agent-oriented modeling and simulation
of distributed manufacturing. In: Handbook of Research on Nature-
Inspired Computing for Economics and Management, pp. 527–540.
Idea Group Reference (2008)

[VHR+07] Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: In-
frastructures for the environment of multiagent systems. Autonomous
Agents and Multi-Agent Systems 14(1), 49–60 (2007)

www.manaraa.com

A Survey on the Implementation of Agent Oriented Specifications 179

[Wag03] Wagner, G.: The Agent-Object-Relationship meta-model: Towards a
unified view of state and behavior. Information Systems 28(5), 475–504
(2003)

[WH09] Warwas, S., Hahn, C.: The dsml4mas development environment. In:
AAMAS 2009: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1379–
1380. International Foundation for Autonomous Agents and Multia-
gent Systems (2009)

www.manaraa.com

Testing in Multi-Agent Systems

Cu D. Nguyen1, Anna Perini1, Carole Bernon2,
Juan Pavón3, and John Thangarajah4

1 Center for Information Technology FBK-IRST, Trento, Italy
{cunduy,perini}@fbk.eu

2 IRIT, University of Toulouse, Toulouse, France
bernon@irit.fr

3 GRASIA, Universidad Complutense de Madrid, Madrid, Spain
jpavon@fdi.ucm.es

4 RMIT University, Melbourne, Australia
john.thangarajah@rmit.edu.au

Abstract. Testing software agents and Multi-Agent Systems (MAS)
needs suitable techniques to evaluate agent’s autonomous behaviours as
well as distribution, social and deliberative properties, which are particu-
lar to these systems. This paper reviews testing methods and techniques
with respect to the MAS properties they are able to address. For this
purpose, we provide a reference framework that provides a classification
of MAS testing levels (such as unit, agent, integration, system, and ac-
ceptance) and of testing approaches along the development artefact they
exploit (namely, design and code artefacts). Open issues in testing MAS
are then discussed providing a basis for a research roadmap.

1 Introduction

Software testing aims at answering questions like Is the system being built good
enough? Does the resulting system fulfil the requirements? That is, testing is
the software development activity, devoted to evaluating product quality and
improving it by identifying defects and problems.

The specific nature of software agents, which are designed to be distributed,
autonomous, and deliberative makes it difficult to apply existing software testing
techniques to them. For instance, agents operate asynchronously and in parallel,
which challenges testing and debugging. Agents communicate primarily through
message passing instead of method invocation, so traditional testing approaches
are not directly applicable. Agents are autonomous and cooperate with other
agents, so they may run correctly by themselves but incorrectly in a community
or vice-versa. Moreover, agents can be programmed to learn (i.e., change their
behaviour); so successive tests with the same test data may give different results.
Initial works on evaluating MAS quality focused on the definition of techniques
for automating the validation of MAS specifications through formal proofing or
model-checking [2, 20], and on the development of debugging techniques and
tools to enhance MAS development platforms [15, 3, 31].

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 180–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

Testing in Multi-Agent Systems 181

Structured testing approaches have been proposed more recently, to comple-
ment analysis and design methodologies [4, 26, 31, 14]. These approaches rest on
the idea that the behaviour of the MAS can be dynamically evaluated providing
as input a set of test cases that are derived from analysis and design artefacts.

Differently from these techniques, simulation-based approaches aim at detect-
ing abnormal behaviours while a simplified version of the system (or a model of
it) is executed in a virtual environment [13, 35, 6, 18]. These approaches seem to
be particularly appropriate to evaluate emerging behaviours in self-organizing
systems [7]. Data mining techniques have been applied to analyse simulation logs
for large MAS, as it is the case in ACLAnalyser [33, 34], which is a way to cope
with scalability of MAS.

In this paper we survey testing methods and techniques, characterizing them
along the testing levels they support (such as unit, agent, integration, system,
and acceptance). We differentiate them also between simulation-based techniques
(called passive approaches) and structured testing methodologies (called active
approaches).

The paper is structured as follows. Section 2 presents a MAS testing frame-
work. State of the art MAS testing approaches are then surveyed in Section 3.
Open issues in testing MAS and promising testing techniques are then discussed
in Section 4, providing a basis for a research roadmap.

2 Classification Dimensions

In order to provide the reader with a structured view for clarity, we propose
to classify existing work on MAS testing following two different aspects: testing
levels and testing techniques. Testing in MAS consists of five levels, as proposed
in [23] and [22]: unit, agent, integration, system, and acceptance. The testing
objectives, subjects to test, and activities of each level are described as follows:

– Unit. Test all units that make up an agent, including blocks of code, imple-
mentation of agent units like goals, plans, knowledge base, reasoning engine,
rules specification, and so forth; make sure that they work as designed.

– Agent. Test the integration of the different modules inside an agent; test
agents’ capabilities to fulfil their goals and to sense and effect the environ-
ment.

– Integration or Group. Test the interaction of agents, communication proto-
col and semantics, interaction of agents with the environment, integration
of agents with shared resources, regulations enforcement; Observe emergent
properties, collective behaviours; make sure that a group of agents and en-
vironmental resources work correctly together.

– System or Society. Test the MAS as a system running at the target operating
environment; test the expected emergent and macroscopic properties of the
system as a whole; test the quality properties that the intended system must
reach, such as adaptation, openness, fault-tolerance, performance.

– Acceptance. Test the MAS in the customer’s execution environment and
verify that it meets stakeholder goals, with the participation of stakeholders.

www.manaraa.com

182 C.D. Nguyen et al.

We will organise existing work along these levels to see on which levels each work
focuses1.

We can also use testing techniques in terms of their test input perspective:
passive and active, to classify existing work. Some employ the passive perspective
to solely observe the output behaviours, test inputs are often predefined configu-
rations or ignored; while others adopt the active perspective seeking extensively
for good test inputs and at the same time monitoring the output behaviours of
the subjects under test.

It is worthwhile noting that the two chosen dimensions, i.e. testing levels and
test techniques, are not intended to be comprehensive. They rather provide a
useful framework to systematically organise existing work. The next section will
give a survey of the most relevant and active work on MAS testing according to
these classification dimensions.

Moreover, the work surveyed are also assessed in terms of their maturity into
usable, in progress , and concept as follows: Usable: there are published results,
there is available material that permits to reproduce the results, and the work
has been used in the development of medium or big size projects. In progress:
there are published results, there is available material that permits to reproduce
the results. So far, the work has been used in academic size projects. Concept:
there are published results, but the applicability of the work is still to be proven.

3 MAS Testing Approaches

The data in Table 1 give an overview of the most recent and active work in this
domain. They are organized according to the classification introduced in the
previous section. The third dimension, maturity, will be tagged to each work. In
the following sections, we first summarize the contributions of the works that
focus mainly on a particular testing level, e.g. agent ; hereafter are the works
that tackle more than one testing level. In addition, we also summarize some
interesting work that do early validation of the agent and MAS design based on
simulation techniques and generated agent skeletons. It is non-trivial to organize

Table 1. State-of-the-art work on MAS testing

 Unit Agent Integration System Acceptance

A
ct
iv
e Zhang et al. (2007, 2008, 2009),

Tiryaki et al. (2006),
Ekinci et al. (2008) ,
Nguyen et al. (2010)

Núñez et al. (2005),
Coelho et al. (2006),
Tiryaki et al. (2006),
Gómez-Sanz et al. (2009),
Nguyen et al. (2008, 2009, 2010)

Gómez-Sanz et al. (2009),
Nguyen et al. (2010)

Nguyen
et al.
(2010)

Nguyen
et al. (2010)

P
as
si
ve

Lam and Barber (2005),
Núñez et al. (2005),
Gardelli et al. (2005),
Fortino et al. (2006),
Bernon et al. (2007),
Cossentino et al. (2008)

Sierra et al. (2004),
Botía et al. (2004),
Rodrigues et al. (2005),
Serrano and Bota (2009),
Serrano et al. (2009),
Sudeikat and Renz (2009)

De Wolf
et al.
(2005)

1 These works are organized in chronological order; those published in the same year
are ordered alphabetically.

www.manaraa.com

Testing in Multi-Agent Systems 183

these works following the proposed classification since their subjects under test
are agent design, not agent code. However, we decide to include them because
they are complementary to testing, and both types contribute to the final goal
of ensuring the quality of the agent or MAS under development.

3.1 Unit Level

Zhang et al. [38, 39, 40], in progress : This body of work presents a framework
for automated unit testing of agent systems. The approach is a model-based
testing approach where the models used are the design artefacts of the agent
design methodology. The chosen methodology (though it is extensible to other
methodologies with similar concepts) is Prometheus [28] and the corresponding
tool that incorporates the testing techniques is the Prometheus Design Tool
(PDT2) [39].

In [38], the basic units for testing are identified as events, plans and beliefs.
Events are tested for coverage (does this event get handled) and overlap (are
there multiple plans that can handle this event in the same situation). Plans are
tested for whether the plan gets triggered in at least some situations (but not
all if there is a condition specified to its applicability), does the plan complete3,
and does the plan post the events that it should (as indicated in the design).
The testing of beliefs are limited to verifying whether the data fields as indicated
in the design are implemented and if there are any events posted by the belief
(e.g., if an event is posted when a belief is updated), test if these events do get
posted.

The paper details mechanisms for identifying the order in which the units are
to be tested, for example, if unit x depends on unit y then y must be tested
before x. It also details the process of generating test cases and outlines the
overall testing process. All the mechanisms are fully automated, but allow for
user input at various stages.

In [40] the details of how variables are to be specified, extracted and assigned
values to create test cases are presented. Furthermore, in order to execute the
test cases the system environment needs to be setup. For example, there may
be interaction with an external program within a plan unit (e.g. a query to an
external database of a web service). There may also be interaction with another
agent within a testing unit. This work deals with the above by introducing
initialization procedures and mock agents to simulate other agents/systems.

Ekinci et al. [10], in progress : This work considers agent goals as the smallest
testable units in MAS and proposes to test these units by means of test goals.
Each test goal is conceptually decomposed into three sub-goals: setup, goal under
test, and assert. The first and last goals prepare pre-conditions and check post-
conditions respectively, while testing the goal under test.

2 www.cs.rmit.edu.au/agents/pdt
3 Note, here it tests for plan completion not for plan success.

www.cs.rmit.edu.au/agents/pdt

www.manaraa.com

184 C.D. Nguyen et al.

3.2 Agent Level

Lam and Barber [19], in progress : This work proposes a semi-automated
process for comprehending software agent behaviours. The approach imitates
what a human user, can be a tester, does in software comprehension: building
and refining a knowledge base about the behaviours of agents, and using it to
verify and explain behaviours of agents at runtime.

Núñez et al. [27], in progress : This paper introduces a formal framework to
specify the behaviour of autonomous e-commerce agents. The desired behaviours
of the agents under test are presented by means of a new formalism, called util-
ity state machine that embodies users’ preferences in its states. Two testing
methodologies are proposed to check whether an implementation of a specified
agent behaves as expected (i.e., conformance testing); one active, the other pas-
sive. In their active testing approach, they use for each agent under test a test
(a special agent) that takes the formal specification of the agent to facilitate it
to reach a specific state. The operational trace of the agent is then compared
to the specification in order to detect faults. On the other hand, the authors
also propose to use passive testing, in which the agents under test are observed
only, not simulated like in active testing. Invalid traces, if any, are then identified
thanks to the formal specifications of the agents.

Coelho et al. [5], in progress : Inspired by JUnit [12], this paper proposes a
framework for unit testing of MAS based on the use of Mock Agents. Their
work focuses on testing roles of agents. Mock agents that simulate real agents
in communicating with the agent under test were implemented manually; each
corresponds to one agent role.

Nguyen et al. [25], in progress : This work takes advantage of agent interac-
tion ontologies that define the semantics of agent interactions to: (i) generate
test inputs; (ii) guide the exploration of the input space during generation; and,
(iii) verify messages exchanged among agents with respect to the defined inter-
action ontology. A set of generation rules have been defined and using them an
automated testing framework can test a particular agent extensively through a
large and diverse number of test cases.

Nguyen et al. [24], in progress : Agent autonomy makes testing harder: au-
tonomous agents may react in different ways to the same inputs over time,
because, for instance they have changeable goals and knowledge. Testing of
autonomous agents requires a procedure that caters for a wide range of test
case contexts, and that can search for the most demanding of these test cases.
Nguyen et al. [24] introduce and evaluate an approach to testing autonomous
agents that uses evolutionary optimization to generate demanding test cases. In
this work, the authors have proposed a systematic way of evaluating the quality
of autonomous agents. First, stakeholder requirements are represented as quality
measures, and corresponding thresholds are used as testing criteria. Autonomous
agents need to meet these criteria in order to be reliable. Fitness functions that

www.manaraa.com

Testing in Multi-Agent Systems 185

represent testing objectives are defined accordingly, and guide this evolutionary
test generation technique to generate test cases automatically.

3.3 Integration Level

Serrano and Bot́ıa [33], Serrano et al. [34], usable: One of the issues when
testing MAS is their scalability, because of the number of agents and more specif-
ically the huge number of interactions that may arise. This makes it very difficult
to apply classical testing techniques. ACLAnalyser addresses these issues by ap-
plying data mining techniques on the logs of MAS executions (initially, on the
JADE agent platform). This allows discovering emergence patterns at system
(social) level. For instance, the creation of communities of agents with strong
interaction links can be detected with the clustering facilities of ACLAnalyser.

3.4 Multiple Testing Levels

Tiryaki et al. [37], in progress : This work proposes a test-driven MAS deve-
lopment approach that supports iterative and incremental MAS construction.
A testing framework called SUnit, which was built on top of JUnit[12] and
Seagent [9], was developed to support the approach. The framework allows writ-
ing tests for agent behaviours and interactions between agents.

Gómez-Sanz et al. [14], usable: This work focuses on agent and interaction
testing level. The INGENIAS Development Kit also provides facilities for MAS
testing. It relies on the model-driven approach of INGENIAS, which allows the
specification of test suites when modelling the MAS. It is possible to specify
testing deployments, interaction tests, and agent mental state inspection. MAS
models are then transformed into code on the INGENIAS Agent Framework
(running on top of JADE agent platform), where tests can be executed and
the developer can get information on the progression of organization workflows,
interactions, and agents’ mental states. Test suites can be automated, and this
facilitates model-driven agile development, as it is easy to perform iterations,
each one passing a test suite.

Nguyen et al. [26], in progress : The paper proposes a comprehensive testing
methodology, called Goal-Oriented Software Testing (GOST), that complements
and exploits goal-oriented analysis and design to derive test suites at all testing
levels, from unit to acceptance. GOST provides a testing process model that
brings the connections between goals and test cases explicit and a systematic
way of deriving test cases from goal analysis. This can help discovering problems
early, avoiding implementing erroneous specifications. In addition, GOST comes
with a tool that supports test case generation, specification, and execution.

3.5 Simulation-Based Design Validation

Sierra et al. [35], usable: The IDE-eli (Integrated Development Environment
for Electronic Institutions) simulation tools support the engineering of MAS as

www.manaraa.com

186 C.D. Nguyen et al.

electronic institutions. The SIMDEI tool, based on Repast, enables to animate
and analyze specifications before deploying them, therefore facilitating the lo-
cation of unexpected behaviours that may jeopardize critical applications. An
agent skeleton is automatically generated from its specification, depending on
the roles and interactions in which this agent may participate. This skeleton has
to be completed by designers with decision-making mechanisms. The simulation
process involves different populations of agents with different features that are
able to act in a specified institution. The institution designer analyses results
and may return to the design stage if results differ from the expected ones.

De Wolf et al.[8], usable: This paper proposes an empirical analysis approach
combining agent-based simulations and numerical algorithms for analyzing the
global behaviour of a self-organizing system. The initial values of macroscopic
variables (those related to the properties that are studied) are supplied, a certain
number of simulations are then initialized accordingly, simulations are then ex-
ecuted for a predefined duration, the average values of these variables on all the
simulations are then given as results to the analysis algorithm, this latter pro-
cesses these results to compute the next initial values. The algorithm also decides
on the configuration of the next simulations (initial conditions, durations) and
the cycle is repeated until the algorithm reaches its goal (for instance, converge
towards a value, find a steady state).

Gardelli et al. [13], usable: Detection of agents having abnormal behaviours
in a self-organizing/open MAS. The infrastructure is both based on TuCSoN
(agents and artefacts) and principles coming from the human immune system.
The behaviour of different scenarios is simulated using SpiM specifications (PI-
calculus).

Fortino et al. [11], Cossentino et al. [6], usable: A simulation-driven devel-
opment process is obtained by integrating state-chart-based simulation method-
ology for MAS with PASSI. Simulation methodology based on three phases:
modelling, coding and simulation. Simulation is based on MASSIMO, a Java-
based discrete-event simulation framework that enables validation and evalua-
tion of the dynamic behaviours of agents (using execution traces) as well as the
performance of the system (using evaluation parameters defined in an ad hoc
way).

Bernon et al. [1], in progress : This paper proposes a model for a cooperative
agent and a simulation tool for helping designers of self-organizing MAS. Ac-
cording to the AMAS (Adaptive MAS) theory, the collective function of these
systems emerges from the cooperative interactions between agents. Agents have
to always avoid, or detect and then repair situations that are against this coop-
erative social attitude. The proposed tool enables a designer to build a simpli-
fied/prototype of his target AMAS under SeSAM, to run simulations in order
to get information about the situations that are non cooperative and not pro-
cessed in the right way by the cooperative agents. The designer can then observe

www.manaraa.com

Testing in Multi-Agent Systems 187

the behaviour of these agents in order to verify whether their cooperative atti-
tude is the expected one according to the emergent collective function obtained.
He has then the possibility to manually improve behaviours by acting on what
and how agents perceive, decide and act.

Sudeikat and Renz [36], in progress : The validation procedure consists in
making hypotheses on the macroscopic observable MAS behaviour based on the
MAS designs. These hypotheses are validated by tailoring simulation settings
and analyzing the obtained results. Causal Loop Diagrams are used to express
the intended application behaviour. An environment of execution is proposed
to measure the correlations between state variables and check the presence of
causal relations.

4 Open Issues

The above-described survey allows pointing out open problems, and solutions to
some of them that have not been validated empirically, so defining the basis of
a research agenda for MAS testing.

First, looking at the five testing levels we may notice that most of the available
approaches concern the unit, agent and integration testing levels, leading to the
observation that system and acceptance testing need further investigation.

Second, most of the approaches need to be consolidated and evaluated on
realistic case studies to provide evidence of their usability.

Specific properties of MAS systems, such as autonomy and adaptivity, and
more generally self-* properties4, are challenging research on engineering and
testing such software systems. Similar issues were previously pointed out in the
Agentlink’s research roadmap [21], quoting it ...techniques are needed to ensure
that the system still executes in an acceptable, or safe, manner during the adap-
tation process, for example using techniques such as dependency analysis or high
level contracts and invariants to monitor system correctness before, during and
after adaptation.

While addressing the above mentioned open issues, possible benefits from con-
ventional software engineering testing’s techniques are worth considering. For
instance, extending to Multi-Agent systems research on metrics for evaluating
software qualities and for defining test oracles for systems’ properties seem par-
ticularly promising. Examples are recent works in the context of the definition of
self-organisation and emergence mechanisms for achieving self-* properties, [16]
and [32], which study a certain number of metrics for evaluating adaptivity in
self-organizing systems. Such metrics could be proved useful when testing and
validating self-organising and complex systems. Moreover, Mikhail et al. [30, 29]
apply coupling and cohesion metrics to evaluate qualities of service-based sys-
tems and intend to apply a similar approach to define metrics for agents within
service oriented architectures.
4 Namely self-managing, self-configuring, self-healing, self-optimizing, and selfprotect-

ing, as defined in the autonomic paradigm [17].

www.manaraa.com

188 C.D. Nguyen et al.

References

[1] Bernon, C., Gleizes, M.P., Picard, G.: Enhancing self-organising emergent systems
design with simulation. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli,
O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 284–299. Springer, Heidelberg
(2007)

[2] Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N.R., Treur, J.: DESIRE: Modelling
Multi-Agent Systems in a Compositional Formal Framework. Int. J. Cooperative
Inf. Syst. 6(1), 67–94 (1997)

[3] Caire, G., Cossentino, M., Negri, A., Poggi, A., Turci, P.: Multiagent Systems
Implementation and Testing. In: Proc. of the 4th From Agent Theory to Agent
Implementation Symposium, AT2AI-4 (2004)

[4] Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: Agile passi: An agile pro-
cess for designing agents. International Journal of Computer Systems Science &
Engineering (2006)

[5] Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit testing in multi-agent
systems using mock agents and aspects. In: SELMAS 2006: Proceedings of the
2006 International Workshop on Software Engineering for Large-scale Multi-agent
Systems, pp. 83–90. ACM Press, New York (2006),
http://dx.doi.org/http://doi.acm.org/10.1145/1138063.1138079

[6] Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: PASSIM: A
Simulation-based Process for the Development of Multi-Agent Systems. Int. Jour-
nal of Agent-Oriented Software Engineering 2(2), 132–170 (2008)

[7] De Wolf, T.: Analysing and Engineering Self-organising Emergent Applications,
PhD thesis, Katholieke Universiteit Leuven (2007)

[8] De Wolf, T., Samaey, G., Holvoet, T.: Engineering self-organising emergent sys-
tems with simulation-based scientific analysis. In: Brueckner, S., Serugendo, D.M.,
Hales, D., Zambonelli, F. (eds.) Third International Workshop on Engineering
Self-Organising Application, sUtrech, Netherlands, pp. 146–160 (2005)

[9] Dikenelli, O., Erdur, R.C., Gumus, O.: Seagent: a platform for developing semantic
web based multi agent systems. In: AAMAS 2005: Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 1271–1272. ACM Press, New York (2005),
http://dx.doi.org/http://doi.acm.org/10.1145/1082473.1082728

[10] Ekinci, E.E., Tiryaki, A.M., Cetin, O., Dikenelli, O.: Goal-Oriented Agent Test-
ing Revisited. In: Proc. of the 9th Int. Workshop on Agent-Oriented Software
Engineering, pp. 85–96 (2008)

[11] Fortino, G., Garro, A., Russo, W., Caico, R., Cossentino, M., Termine, F.:
Simulation-Driven Development of Multi-Agent Systems. In: Workshop on Multi-
Agent Systems and Simulation, Palermo, Italia (2006)

[12] Gamma, E., Beck, K.: JUnit: A Regression Testing Framework (2000),
http://www.junit.org

[13] Gardelli, L., Viroli, M., Omicini, A.: On the Role of Simulations in the Engineer-
ing of Self-Organising MAS: The Case of an Intrusion Detection System in TuC-
SoN. In: 3rd International Workshop Engineering Self-Organising Applications,
pp. 161–175 (2005)

[14] Gómez-Sanz, J.J., Bot́ıa, J., Serrano, E., Pavón, J.: Testing and debugging of MAS
interactions with INGENIAS. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008.
LNCS, vol. 5386, pp. 199–212. Springer, Heidelberg (2009)

http://dx.doi.org/http://doi.acm.org/10.1145/1138063.1138079
http://dx.doi.org/http://doi.acm.org/10.1145/1082473.1082728
http://www.junit.org

www.manaraa.com

Testing in Multi-Agent Systems 189

[15] Gutknecht, O., Ferber, J., Michel, F.: Integrating tools and infrastructures for
generic multi-agent systems. In: AGENTS 2001: Proceedings of the Fifth Interna-
tional Conference on Autonomous Agents, pp. 441–448. ACM, New York (2001)

[16] Kaddoum, E., Gleizes, M.-P., Georg, J.-P., Picard, G.: Characterizing and evaluat-
ing problem solving self-* systems. In: Dini, P., Gentzsch, W., Geraci, P., Lorenz,
P., Singh, K. (eds.) Computation World: Future Computing, Service Computa-
tion, Cognitive, Adaptive, Content, Patterns (Adaptive 2009), pp. 137–147. IEEE
Computer Society, Los Alamitos (2009)

[17] Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

[18] Kidney, J., Denzinger, J.: Testing the limits of emergent behavior in mas using
learning of cooperative behavior. In: Proceeding of the 2006 Conference on ECAI
2006, pp. 260–264. IOS Press, Amsterdam (2006)

[19] Lam, D.N., Barber, K.S.: Debugging agent behavior in an implemented agent
system. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 104–125. Springer, Heidelberg
(2005)

[20] Lomuscio, A., Raimondi, F.: mcmas: A Model Checker for Multi-agent Systems.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454.
Springer, Heidelberg (2006)

[21] Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing), AgentLink (2005)

[22] Moreno, M., Pavón, J., Rosete, A.: Testing in agent oriented methodologies. In:
Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A.,
Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5518, pp. 138–145. Springer,
Heidelberg (2009)

[23] Nguyen, C.D.: Testing Techniques for Software Agents, PhD thesis, International
Doctorate School in Information and Communication Technologies - University of
Trento (2008)

[24] Nguyen, C.D., Miles, S., Perini, A., Tonella, P., Harman, M., Luck, M.: Evo-
lutionary testing of autonomous software agents. In: The Eighth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), pp.
521–528. IFAAMAS (2009)

[25] Nguyen, C.D., Perini, A., Tonella, P.: Ontology-based Test Generation for Multi
Agent Systems. In: Proc. of the International Conference on Autonomous Agents
and Multiagent Systems (2008)

[26] Nguyen, C.D., Perini, A., Tonella, P.: Goal-oriented testing for MASs. Int. J.
Agent-Oriented Software Engineering 4(1), 79–109 (2010)

[27] Núñez, M., Rodŕıguez, I., Rubio, F.: Specification and testing of autonomous
agents in e-commerce systems. Software Testing, Verification and Reliability 15(4),
211–233 (2005)

[28] Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. John Wiley and Sons, Chichester (2004)

[29] Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion metrics for predicting main-
tainability of service-oriented software. In: QSIC 2007: Proceedings of the Seventh
International Conference on Quality Software, pp. 328–335. IEEE Computer So-
ciety, Washington (2007)

[30] Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling metrics for pre-
dicting maintainability in service-oriented designs. In: Australian Software Engi-
neering Conference, pp. 329–340 (2007)

www.manaraa.com

190 C.D. Nguyen et al.

[31] Poutakidis, D., Winikoff†, M., Padgham, L., Zhang, Z.: Debugging and Testing of
Multi-Agent Systems using Design Artefacts. In: Multi-Agent Programming, pp.
215–258 (2009)

[32] Raibulet, C., Masciadri, L.: Towards evaluation mechanisms for runtime adaptiv-
ity: from case studies to metrics. In: Dini, P., Gentzsch, W., Geraci, P., Lorenz,
P., Singh, K. (eds.) Computation World: Future Computing, Service Computa-
tion, Cognitive, Adaptive, Content, Patterns (Adaptive 2009), pp. 146–152. IEEE
Computer Society, Los Alamitos (2009)

[33] Serrano, E., Botia, J.A.: Infrastructure for forensic analysis of multi-agent systems.
In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS, vol. 5442,
pp. 168–183. Springer, Heidelberg (2009)

[34] Serrano, E., Gómez-Sanz, J.J., Bot́ıa, J.A., Pavón, J.: Intelligent data analysis
applied to debug complex software systems. Neurocomputing 72(13-15), 2785–
2795 (2009)

[35] Sierra, C., Aguilar, J.A.R., Noriega, P., Esteva, M., Arcos, J.L.: Engineering Multi-
Agent Systems as Electronic Institutions. Novatica 170, 33–39 (2004)

[36] Sudeikat, J., Renz, W.: A systemic approach to the validation of self–organizing
dynamics within MAS. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS,
vol. 5386, pp. 31–45. Springer, Heidelberg (2009)

[37] Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: SUNIT: A unit testing
framework for test driven development of multi-agent systems. In: Padgham, L.,
Zambonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 156–173.
Springer, Heidelberg (2007)

[38] Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent sys-
tems. In: 2nd International Working Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE 2007), Barcelona, Spain, pp. 10–18
(2007)

[39] Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing intelligent
agents in pdt. In: AAMAS (Demos), pp. 1673–1674 (2008)

[40] Zhang, Z., Thangarajah, J., Padgham, L.: Model based testing for agent systems.
In: AAMAS, vol. (2), pp. 1333–1334 (2009)

www.manaraa.com

Processes Engineering and AOSE

Massimo Cossentino1, Marie-Pierre Gleizes2,
Ambra Molesini3, and Andrea Omicini3

1 ICAR CNR, Viale delle Scienze, ed. 11, 90128 Palermo, Italy
cossentino@pa.icar.cnr.it

2 SMAC team, IRIT, University of Toulouse,
118 Route de Narbonne, F-31062 Toulouse Cedex 9, France

Marie-Pierre.Gleizes@irit.fr
3 Alma Mater Studiorum – Università di Bologna

viale Risorgimento 2, 40136 Bologna, BO, Italy
via Venezia 52, 47521 Cesena, FC, Italy

ambra.molesini@unibo.it, andrea.omicini@unibo.it

Abstract. Agent-oriented methodologies like ADELFE, ASPECS,
INGENIAS, MaSE, PASSI, Prometheus, SODA, or Tropos propose devel-
opment formulae with their own specificities. Analyzing them is the re-
sponsibility of the Process Engineering discipline, which is currently one
hot research line in software engineering. The analysis makes it possible to
construct a catalogue of current processes, assessing their utility and en-
abling their reuse. Additionally, the study may lead to the modification or
improvement of existing development processes, perhaps combining frag-
ments from solutions coming from the different methodologies.

In this paper, we first provide a general view over the area of Software
Process Engineering (SPE), then focus on the most recent developments
of SPE in the Agent-Oriented Software Engineering (AOSE) field.

Keywords: Agent-Oriented Software Engineering, Methodologies, Soft-
ware Process Engineering, Fragment.

1 Software Processes

In Software Engineering (SE), developers expects to find concrete “instructions”
and methods to complete development before a deadline, delivering a quality
product, and with a cost meeting the initial budget of the project. Such in-
structions are typically expressed in the form of a software development process.
Development processes have often appeared in Agent Oriented Software Engi-
neering (AOSE) methodologies as a simple enumerated list of steps. While this
can be considered effective for small developments – e.g. one person during a
short period of time –, it is hardly applicable to medium-to-big developments—
e.g. a development team with a project several years long. The literature suggests
using more complex solutions, like Cernuzzi et al. [1] or Fuggetta [2].

Cernuzzi et al. [1] define the development process as “an ordered set of steps
that involve all the activities, constraints and resources required to produce a

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 191–212, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

192 M. Cossentino et al.

specific desired output satisfying a set of input requirements”. Fuggetta [2] pro-
poses an interesting definition from the organizational point of view of software
development process (or simply software process) as “the coherent set of poli-
cies, organizational structures, technologies, procedures, and artifacts that are
needed to conceive, develop, deploy, and maintain (evolve) a software product”.
Software processes can then be (and typically are) composed by a set of stages,
each specifying which phases/activities should be carried on and which roles
(i.e.: client, analyst, software architect, programmers, etc.) and resources are to
be involved in them.

Such concepts are seldom found in existing agent-oriented methodologies.
Typically, new AOSE methodologies get proposed without explicitly relating
them to any process models and, at the same time, being implicitly suitable
only for a limited set of (or a single) process models. This contrasts with the
fact that designing multi-agent systems is a complex software development, and
that developers need to be guided and helped in this task. Therefore, agent-
oriented methodologies should also take into account the fact that the prod-
uct is not merely developed but also: (i) conceived, often relying on unstable
or incomplete requirements; (ii) deployed, i.e., put to work in an operational
environment; (iii) maintained and evolved, depending on novel requirements or
changes in the operational environments. Besides, intuitively, different needs call
for different processes. For example, it is quite clear that the way a multi-agent
system (MAS) dedicated to solve a specific problem such as a timetabling [3]
and a MAS which has to simulate a natural phenomenon [4] involve different
development approaches.

Another important aspect to be considered is that a software process is not
something static that, once adopted, should never be changed. Instead, a process
can be improved with the experience of applying it in a concrete development.
For instance, PASSI has been modified in order to also handle multi-agent simu-
lation [5], while Tropos and ADELFE are combined in order to take into account
self-adaptation in Tropos [6]. As a consequence, any agent-oriented software en-
gineer should assume the development process evolves over time. It evolves to-
gether with the increased awareness of the involved people, towards a maturity
level1 that ensures the repeatability of a process in terms of the quality, cost
and time of the produced software. This is a fundamental evaluation criterion
for any organization that would aim at adopting the agent-based paradigm in
its development process.

As a conclusion, the development process is an important element of any
software engineering methodology—and is essential within any agent-oriented
methodology; it attends the needs of a concrete development problem and evolves
when the change brings benefits. Therefore, the study of the many aspects of
the software development process from a scientific perspective is mandatory.

Along this line, in this paper we adopt Software Process Engineering (SPE) as
the conceptual and technical framework for such a study, then discuss its applica-
tion to AOSE. In short, SPE provides the tools for analyzing, decomposing, and

1 CMMI, http://www.sei.cmu.edu/cmmi/tools/cmmiv1-3/

http://www.sei.cmu.edu/cmmi/tools/cmmiv1-3/

www.manaraa.com

Processes Engineering and AOSE 193

building software development processes. Accordingly, Section 2 briefly describes
SPE under the classical SE perspective, along with the main concepts used in
process composition. Then, Section 3 presents SPE from the AOSE point of
view, and expounds the recent works done on fragments and process engineering
customization.

2 Software Processes Engineering

Like most processes concerning human activities, the software development pro-
cess is inherently complex and hard to standardize, as demonstrated by the
difficulties reported in the literature of automating the software process. Despite
the great acceptance of development processes based on the Unified Process
(UP [7]), researchers and practitioners in the area agree that there is no sin-
gle software process that could fit the need of all [8]. UP itself is essentially a
highly-customizable development framework rather than a well-established and
fixed process.

Among the current method engineering approaches in the literature, Situa-
tional Method Engineering (SME) is undoubtedly one of the most promising:
there, the construction of ad-hoc processes is based on reusing portions of exist-
ing or newly-created processes, called fragments. So, in the reminder of this sec-
tion we first discuss the basis of SME (Subsection 2.1), then we sketch the diverse
fragment definitions (Subsection 2.2) and fragment repositories (Subsection 2.3),
finally we briefly introduce some tools supporting SME (Subsection 2.4).

2.1 Situational Method Engineering

Situational Method Engineering [9,10] is the discipline that studies the compo-
sition of new, ad-hoc software engineering processes for each specific need. This
is based on the assumption that the “situation” is the information leading to
the identification of the right design approach. This paradigm provides tools for
the construction of ad-hoc processes by means of the reuse of existing process
fragments (called method fragments), stored in a repository (Subsection 2.3). In
order to be effective, this approach requires the process and its fragments to be
suitably modeled.

Within the concept of situation authors usually include: requirements of the
process, development context, the specific class of problem to be solved. Sev-
eral approaches to SME have been presented in the last years with no specific
reference to the OO context [8,11,12,13,14].

The most complete approach in the field is probably represented by the OPEN
Process Framework (OPF [15]). OPF is based on a large number of method frag-
ments stored in a repository along with a set of construction guidelines that are
considered to be parts of existing methodologies and can be used to construct
new methodologies. The OPF meta-model is composed of five main meta-classes
[16]: Stages, Producers, Work Units, Work Products and Languages. When in-
stantiated, each meta-class produces a method fragment.

www.manaraa.com

194 M. Cossentino et al.

2.2 Fragment Definition

Different approaches to process composition may be also rely on different defini-
tions (and labels) for the building blocks. We may attempt a rough categorization
of process reusable parts defined in classical SE:

Method Fragment — A method fragment is a piece of an information systems
development process. According to Brinkkemper et al. [11,17], there are two
kinds of method fragments: the product fragment – concerning the structure
of a process product, representing deliverables, diagrams, . . . – and the pro-
cess fragment—describing the stages, activities and tasks to be performed
to produce a product fragment.

Method Chunk — According to J. Ralyte et al. [12,18], a method chunk is
a consistent and autonomous component of a development process. The
method chunk integrates two aspects of the method fragment, the prod-
uct and the process, so it represents a portion of process together with its
related product(s).

OPF Method Fragment — An OPF method fragment is an instance of one
of the following classes: Stages, Producers, Work Units, Work Products and
Languages. According to D. Firesmith and B. Henderson-Sellers [15,19], frag-
ments of different types need to be composed in order to provide the different
features of a process.

2.3 Fragment Repository

A fragment repository (or method library) is an essential component of any SME
approach. In spite of this, only few repositories are currently available, due to
the great effort required to build such a resource as well as to the lack of a
widely-accepted standard in the field.

A repository could be used as a general purpose software engineering processes
container. It could even contain sets of reusable elements (content and process)
that do not belong to a specific software engineering processes, but could be used
as building bricks (fragments/chunks). The largest available repository is part
of OPF [15]2. The support for a method library is also present in a widespread
software tool, the Eclipse Process Framework3 (EPF) plugin, which supports
the OMG Software Process Engineering Metamodel (SPEM) v. 2.0 [20], and
provides all the capabilities needed to define method plugins into library as
well as to tailor new software engineering processes from those plugins (method
configuration). A project such as OpenUP4 provides an open-source, common
and extensible base for iterative incremental software engineering processes by
using the modularity and re-usability skills of SPEM 2.0 through the EPF
plugin.

2 http://www.opfro.org/
3 http://epf.eclipse.org/
4 http://epf.eclipse.org/wikis/openup

http://www.opfro.org/
http://epf.eclipse.org/
http://epf.eclipse.org/wikis/openup

www.manaraa.com

Processes Engineering and AOSE 195

2.4 Tools

When developing a software system, several tools are required to support the
different stages of the process. Areas of application for design tools spread from
requirements elicitation to design, testing, validation, version control, configura-
tion management and reverse engineering. In this section, not all tools available
during the engineering process are described. We rather would like to focus on
the different kinds of tools linked to apply or adapt a method. Tools can be
classified in three different categories: CASE, CAME, and CAPE tools.

The CASE acronym stands for Computer Aided Software Engineering, and
it addresses the large category of tools that could be used in any software en-
gineering process employment. CASE tools support the modeling activities and
constrain the designer just in the choice of the system modeling language (for
instance UML), and, when code generation is possible, on the coding languages.
The main limit of these tools is that they are not aware of the adopted method
– in terms of work to be done – and are instead only concerned with the repre-
sentation of some (often uncoordinated) views of the system.

Today, in the field of aided software development, meta-CASE tools achieved
large significance, being able to provide an either automated or semi-automated
process for the creation of CASE tools, based on a meta-model used to describe
the language, the concepts and the relationships of a specific design method-
ology. In the field of Method Engineering a meta-CASE tool – called CAME
(Computer Aided Method Engineering) – is used to describe and to represent
a set of methods. CAME tools are conceived to support methods rather then
design. They do not adopt any specific software development process model –
they are not even aware of its existence because they are only concerned with the
drawing of the different aspects of the model separately –, therefore the designer
could freely work on the different views, even violating the prescribed process
without any warning from the tool.

Several existing CAME tools (Mentor [21], Decamerone [22], MetaEdit+ [23],
INGENME5 and MethodBase [24]) are also based on Meta-CASE technology
allowing the construction or the automatic generation of CASE tools specific
for given methods. In particular, MetaEdit+ seems the most complete CAME
tool, even if it presents several limitations. MetaEdit+ makes it possible to im-
plement a domain specific modeling language, and to use it in ad-hoc created
CASE tool. MetaEdit+ is at the same time a CAME and a CASE tool, and
is the only tool that allows the instantiation of a CASE tool starting from the
definition of a given modeling language. However, MetaEdit+ does not provide
any support for managing the development processes, and the generated CASE
tools always adopt the same UML editor for the software product design. As a
result, the generated methods are static, and there is no way to reuse portions
of existing tools supporting the method fragments used. A possible alternative
to MetaEdit+ is INGENME, a tool for producing self-contained visual editors
for languages defined using an XML file. INGENME can be used to test visual
languages and also to produce customized editors.
5 http://ingenme.sourceforge.net/

http://ingenme.sourceforge.net/

www.manaraa.com

196 M. Cossentino et al.

One of the intrinsic limits of CAME tools – the lack of process awareness
– is overcome by CAPE (Computer Aided Process Engineering) tools that are
instead aware of the adopted process model – or, that could be used to design
it –, and coordinate the different stages of the process in order to respect its
prescriptions.

3 AOSE Software Processes Engineering

Putting the focus of process engineering on the development of multi-agent sys-
tems moves the attention of the designer to the study of specific topics such
as:

– the definition of the agent concept (that is often specific to each single
approach),

– the definition of the MAS meta-model (composed of the already cited agent
as well as many other entities like role, communication, group, and so on),

– the agent’s reasoning technique (goal-oriented, expert system-based, rule
based, . . .),

– the implementation of autonomy, self-organization and similar system
features.

Such topics affect the conception of the AOSE design process. Just to provide an
example, it is nowadays very uncommon to find the adoption of formal languages
in the development of object-oriented system. Conversely, this is quite frequent
in conception of MAS where such languages provide a good support for the
design of some reasoning techniques. This obviously influences the developing
process since there is the need of several different new activities such as model
checking and verification.

Besides, the absence of a standardized and widely accepted MAS meta-model
has deeply influenced the introduction of SME techniques in the AOSE field.
As a consequence, several authors centered their approach on the influence that
the definition of a specific MAS type can have on the process that have to be
followed in order to analyze and design such a MAS type. More details about
such a variant of the classical SME approach are provided in the next subsection.

3.1 AOSE Situational Method Engineering

As far as the approaches specifically related to the agent-oriented context are
concerned, an initial reference framework has been provided by the work of the
FIPA Methodology Technical Committee (TC)6 devoted to the study of frag-
ments’ definition and composition [25]. A standard specification is expected by
the successor of that committee, the IEEE FIPA Design Process Documentation
and Fragmentation (DPDF) working group7. The DPDF WG approach is based

6 http://www.fipa.org/activities/methodology.html
7 http://www.fipa.org/subgroups/DPDF-WG.html

http://www.fipa.org/activities/methodology.html
http://www.fipa.org/subgroups/DPDF-WG.html

www.manaraa.com

Processes Engineering and AOSE 197

on the adoption of SPEM 2.0 with the inclusion of minor extensions motivated
by the specific needs of a multi-agent system design process [26].

SME in AOSE shares the same objective with SME researchers in proposing
the most relevant process for a given situational context of development. The
objective is to provide CAPE tools enabling to build the most convenient pro-
cess and possibly to adapt it during the development. In fact, the most relevant
fragments must be retrieved and used among all the available fragments. Con-
sequently, some of the works in the AOSE community currently focus on how to
automate the software process construction such as the three following examples
reported here.

PRoDe: A Process for the Design of Design Processes. PRoDe [27] is
an approach for new AOSE design process composition based on two pillars: the
process fragment [28] and the MAS meta-model. These two elements are both
defined and considered under a specific agent-oriented perspective thus creating a
peculiar approach. PRoDe is based on the classic situational method engineering
and it is organized in three main phases: Process Analysis, Process Design and
Process Deployment. They clearly resemble the software development phases
thus realizing the parallelism proposed by Osterweil in his well-known paper
Software Processes are Software too [29].

During Process Analysis, the process to be developed is analyzed and its
requirements are elicited. Process Requirements Analysis delivers a portion of
the MAS meta-model, whose structure will decisively affect the following steps of
process development. During Process Design the method engineer selects, from
a previously constructed repository, a set of fragments that he/she assembles
in the new process. Finally, in the Process Deployment phase, the new process
is used to solve a specific problem. From this employment some feedbacks are
received and this is used to further enhance the process towards its maturity. It is
also possible to repeat the whole construction process in an incremental/iterative
way.

The most relevant contribution coming from PRoDe to the state of the art
consists in some guidelines driving the method designer through the most diffi-
cult steps of the work. This is a very relevant aspect of the approach since skills
required to a method engineering are very high and such a professional profile
is not frequently found in the field. The most relevant guideline is realized by
an algorithm used to prioritize the retrieval of fragments from the repository.
The problem solved by the algorithm is: given a MAS meta-model and the set
of fragments able to instantiate the elements of the meta-model, which is the
first fragment that should be selected? And the following? This problem is rele-
vant because the selection of one fragment (the first) introduces new constraints
in the design: its inputs are to be satisfied and its outputs should be all used
otherwise the fragment needs an adaptation (an adjunctive cost).

Currently the process has been already adopted in several case studies [30,31]
and it is at the basis of the approach proposed in the next subsection.

www.manaraa.com

198 M. Cossentino et al.

MEnSA Project. In the MEnSA project8 the authors decided to directly link
the new process requirements to the fragments they were going to select. The
composition of the new methodology was inspired by the PRoDe approach [27],
which proposes to use the MAS meta-model as a central element for selecting
and assembling fragments. It is worth to note that while in the PRoDe approach
requirements are used to compose an initial draft of the MAS meta-model, which
is then used to retrieve fragments from the repository, in the novel MEnSA
approach process requirements are used to select fragments, and their outcomes
are used to define the MAS meta-model.

The approach adopted is organised in a few steps. The first step of the work
consists in collecting process requirements, currently some methodologies have
been decomposed in fragments: PASSI, Gaia, Tropos and SODA. Then, frag-
ments are retrieved from the repository according to the requirements they con-
tribute to fulfill.

The fragments selection activity makes available the set of fragments used to
produce a first draft of the MAS meta-model. Thus, each fragment contributes
to define a portion of the meta-model.

Once the meta-model has been polished, the initial set of fragments finds its
position in a proper life-cycle, therefore a proper process model has to be chosen.
Classically-available life-cycles (waterfall, iterative/incremental, spiral, etc.) are
here considered, and the best fitting is used to host the selected fragments.

Now fragments can be positioned in the life-cycle placeholders, and a first
version of the new process is almost ready. The last activity is fragments adapta-
tion, which aims at solving incompatibility issues arising fragments from different
processes. Such fragments should then be adapted to properly support the new
MAS meta-model and to comply with all input/output constraints.

At this stage, an initial version of the process is finally available. This could
be either complete or incomplete according to the number and refinement of
the initial process requirements, as well as to other factors—fragment repository
dimension, assembly issues, process phases coverage,

In the MEnSA process composition, when the process needs to be completed,
the authors follow up with an iteration of the proposed composition approach,
given its smaller granularity and its MAS-meta-model-based approach that per-
fectly fits the needs of the new process final refinement.

Self-Organisation-based SPE Design. The aim of this approach is to pro-
vide a system able to combine existing fragments to build a software process
adequate to the expertise level of designers and to the applications features as
well. The designer may interact with the system in order to modify the software
process proposed by the system. The SPE is co-constructed by the system and
the designer.

The system continuously self-adapts to these new perturbations and proposes
a new software process taking into account the designer’s wishes. Each fragment
8 Methodologies for the Engineering of complex Software systems: Agent-based ap-

proach. For more details, see the project website at:
http://www.mensa-project.org/

http://www.mensa-project.org/

www.manaraa.com

Processes Engineering and AOSE 199

is agentified following the Adaptive Multi-Agent Systems (AMAS) theory [32].
The adaptive MAS automatically designs an adaptive software engineering pro-
cess [33]. The resulting MAS is composed of (i) the fragments, which are the sole
agents of the MAS (called fragment-agents), and (ii) the resources of the MAS,
which are the MMMEs (MAS Meta-Model Elements), the MMME repository
and the fragments repository.

The first MAS prototype is developed using a repository containing the already-
defined fragments of three processes from three methodologies: ADELFE [34],
INGENIAS9, and PASSI [35].

In this system, fragments are autonomous agents able to find other relevant
fragments to interact (workproduct exchanges). The fragment-agents cooperate
with each other in order to find their right location in the software process. The
agentification of fragments is realized in a general way to enable the adding or
removal of a fragment in the set of all fragments. In the first version of the system,
agentification must ensure a mutual understanding between what is required by
a fragment and what is produced by it—i.e., the agent-fragments understand
each other.

The behavior of a fragment is represented by a finite state automaton with
three states: Inactive, Unsatisfied and Satisfied. The fragment-agent switches
states according to its perception of the environment and behaves according to
its current state. Following the AMAS theory, the design of agents focuses in
particular on the Non Cooperative Situations (NCS) [32]. Encountering a NCS
is one of the possible reasons for a fragment-agent to change its state. For a
fragment-agent, three NCS are identified. The first is when none of the MMMEs
that a fragment-agent can produce are needed by the other fragments (the agent
is useless). The second is when a fragment-agent needs some MMMEs that no
other fragment-agent can produce (the agent cannot satisfy its preconditions).
The third is when two fragment-agents of the same process produce the same
MMMEs (agents are in conflict, and must determine which one of them is use-
less). To react to such NCS, a fragment-agent can execute three main actions.
First, it can use existing MMMEs to produce new ones and register them to the
repository. Or, it can stimulate other fragments able to produce their needed
MMMEs by sending a stimulation value. This value depends on the amount of
stimulation it received. So, the stimulation value of a fragment-agent can be
assimilated to a measure of its criticality, since the more it is important to the
system, the more a fragment-agent will be stimulated. Finally, it can observe
other agents and determine its membership to a process.

3.2 Fragment Definition

As far as the agent-oriented approaches are concerned, some contributions for
the adoption of the OPF framework [36] to agent design have been proposed
such as in PASSI [37] and Tropos [38]. A different solution was proposed by the
FIPA Methodology TC for the adoption of a kind of method chunk, called pro-
cess fragment, which is a portion of a development process defining deliverables
9 http://grasia.fdi.ucm.es/main/node/241

http://grasia.fdi.ucm.es/main/node/241

www.manaraa.com

200 M. Cossentino et al.

(workproducts), guidelines, preconditions, sets of system meta-model elements
and key-words characterizing it in the scope of the method in which it was de-
fined. The main difference with respect to the OPF lays in the focus of the
MMMEs managed by the process fragment. The definition and use of a MAS
meta-model enables the adoption of Model-Driven Engineering practices, and
overcomes typical problems due to the confusing definition of agent-oriented
concepts in most AOSE methodologies. Besides, considering fragments through
such a rough definition eases the adoption of SPEM 2.0 concepts as well as a
high level of compliance to that standard. However, [25] presents an enhanced
version of the fragment meta-model originated by the FIPA Methodology TC;
one of the proposals is that fragments should be considered from different points
of view whether the designer is interested in their reuse, storing, implementation,
or in the definition of the process they represent. So, it seems obvious that the
choice of a process fragment depends on the point of view and the requirements
it has to fulfil.

Process fragments do not match a single SPEM 2.0 concept, instead they
should rather be considered as matching several ones depending on the gran-
ularity or concern. A process fragment is a portion of a process, but process
element definitions in SPEM 2.0 are divided into two categories: definition and
use. Thus, such a separation should be taken into account while mapping frag-
ments to SPEM 2.0 concepts. Furthermore, also fragments granularity should to
be considered, as it implies a different mapping.

It is worth to note that although the use of SPEM is widespread in the SE
community, a new standard has been recently published by ISO [39,40], which
models both the design and enactment of a process by using a multilayered
architecture. The peculiarity of that work lays in the adoption of powertypes,
an innovative mechanism allowing a class to assume value for its attributes
not necessarily when instantiated in the next abstraction level but, if required,
at the second level [41]. A similar standardization effort, in the AOSE field,
is currently ongoing within the IEEE FIPA DPDF working group. The first
step has been the identification of the most suitable process meta-model and
notation: (i) for the representation of the existing design processes from which
the fragments have to be extracted, and (ii) for the representation of fragments
themselves. An important contribution on the subject might come from the
SPEM 2.0 specification.

The second step has been consisted in the definition of a proper template
for the description of agent-oriented design processes. Such a template refers to
the selected process meta-model and suggest the adoption of good practices in
documenting existing processes as well as defining new ones. The availability
of such a specification would have several benefits, the first is that adopting
the same documentation template would enable an easier comprehension (and
comparison) of existing and new processes. This goes in the direction initially
drawn by UML creators (Booch, Jacobson, and Rumbaugh) when they first
removed all the specific notation issues cluttering their own approaches and then
easily found commonalities that inspired their new (and successful) modeling

www.manaraa.com

Processes Engineering and AOSE 201

language [42]. The specification for process documentation has been already
proposed for adoption as an IEEE FIPA standard.

After that, the group is going to define the process fragment structure and
according to that a procedure for extracting fragments from processes docu-
mented according to the adopted template. The final result will consist in a
set of fragments that are compliant to the fragment specification and are doc-
umented according to the same style. This would enable their composition and
the production of a consistent documentation of the new process.

3.3 Fragment Repository and Tools

Some extensions of the OPEN framework [15] aiming at including the support for
agent-oriented methodologies have been recently presented in [36,37,38,43,44,45].
Another (explicitly agent-oriented) repository10 has been developed according to
the specifications proposed by the FIPA Methodology TC [46], used as a starting
point by the IEEE FIPA DPDF working group.

The proposed repository structure is an XML-based repository storing a col-
lection of XML documents, each one representing a method fragment, validated
by a Document Type Definition (DTD) or an XML Schema [25]. The validation
process ensures that the method fragment was extracted and defined according
to the prescribed meta-model (Subsection 3.2). The repository is oriented to-
wards a MAS meta-model-based classification of fragments; each one of them is
in fact labeled with the MAS meta-model components that are defined or refined
during its activities. Each activity has some inputs and produces some outputs
in terms of defined/refined components of the MAS meta-model [25]. At the mo-
ment, the repository contains the fragments coming from PASSI, ADELFE and
Tropos. Also, AOSE could benefit from projects such as OpenUP by defining
specific AO method plugins and reusing predefined ones.

As far as tools are concerned, some of the CAME tools introduced in Subsec-
tion 2.4 – such as INGENME – are general enough to be effectively reused in the
AOSE context. In addition, an example of CAPE tool specifically developed in
the agent field is represented by Metameth [47], which allows the composition of
a set of fragments stored in a specific repository. Metameth seems the only tool
considering interactions with existing external tools for the creation of a CASE
tool based on the characterization of the interaction between Metameth and the
external tools. At the moment, these kinds of interactions are rather limited be-
cause of the complexity of the composition of the existing tools’ portions—which
are typically based on different development principles and specific APIs, to be
taken into account in order to compose at the best the different tools.

3.4 AOSE Meta-model

In their most general acceptation, meta-models have been addressed from dif-
ferent points of view. Just to cite some of them we can list what follows:

10 http://www.pa.icar.cnr.it/passi/FragmentRepository/fragmentsIndex.html

http://www.pa.icar.cnr.it/passi/FragmentRepository/fragmentsIndex.html

www.manaraa.com

202 M. Cossentino et al.

Bernon et al. — The process of designing a system (object or agent-oriented)
consists of instantiating the system meta-model that the designers have in
their mind in order to fulfill the specific problem requirements. In the agent
world this means that the meta-model is the critical element because of the
variety of methodology meta-models [48].

Gonzalez-Perez et al. — A meta-model is a model of a methodology or, in-
deed, of a family of related methodologies [49].

Brian Henderson-Sellers — Ameta-modeldescribestherulesandconstraints
of meta-types and meta-relationships. Concrete meta-types are instantiated
for use in regular modeling work. A meta-model is at a higher level of ab-
straction than a model. It is often called a model of a model. It provides
the rules/ grammar for the modeling language itself. The modlling language
consists of instances of concepts in the meta-model [50].

Although it is possible to describe a methodology without an explicit meta-
model, formalizing the underpinning ideas of the methodology in question is
valuable when checking its consistency or when planning extensions or modifica-
tions. The importance of meta-model becomes clear when it is necessary to study
the completeness and the expressiveness of a methodology, and when comparing
different methodologies. Consequently, there is the need to study the different
AOSE methodologies, to compare their abstractions, rules, relationships, and
the process they follow, all of that would lead to a more comprehensive view of
this variety of methodologies. Different works have been devoted to the study
[51,52,53,54,55,56,57], and the unification of MAS meta-models [48,50,58,59],
that it has been one of the more important topic in the work done by the agent
community within the Agentlink Agent-Oriented Software Engineering Technical
Forum Group (AOSE TFG) meetings11.

The importance of meta-modeling is not only for having a precise view of
agent-oriented methodologies as a way to check their completeness and expres-
sivity, or to compare them, but it is also useful to clarify the distance between
agent-oriented methodologies and infrastructures [51]. Expressing agent-oriented
methodologies and infrastructures through formal meta-models is an initial step
to reduce the conceptual and technical gap amongst these two research areas12.

The situation up-to-date is that the lack of a unique MAS meta-model leads
each methodology to deal with its own concepts and system structure, even if
currently there are two kind of standardization efforts. The first effort is the
recent standard “Software Engineering Metamodel for Development Methodolo-
gies” ISO/IEC 24744 13 [60]. This standard is not specific for the agent-oriented
field, rather it is very general. It is based on two powerful but someway com-
plex concepts: powertype, which was already introduced, and clabject, i.e. a
class/object hybrid concept. These tow concepts could easily lead to reduce the
understandability of the standard.

11 See http://www.pa.icar.cnr.it/cossentino/al3tf3/ for more details.
12 http://www.mensa-project.org/
13 See http://www.iso.org/iso/catalogue_detail.htm?csnumber=38854

http://www.pa.icar.cnr.it/cossentino/al3tf3/
http://www.mensa-project.org/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38854

www.manaraa.com

Processes Engineering and AOSE 203

The second effort is represented by the OMG Agent Platform Special Interest
Group14 (Agent PSIG) that tries to identify and recommend new OMG specifi-
cations in the area of agent technology, with particular attention to:

– recommend agent-related extensions to existing and emerging OMG
specifications;

– promote standard agent modeling languages and techniques that increase
rigor and consistency of specifications;

– leverage and interoperate with other OMG specifications in the agent area.

The work of the Agent PSIG is still in its infancy and at the time of writing
there are no specific results nor public documents.

3.5 Agent-Oriented Design Processes

In this section, we will provide a quick survey on some processes from literature.
In order to provide a schematic view we will compare them according to a list of
features. The list of compared AOSE processes includes: ADELFE [61], ASPECS
[30], GAIA [62], INGENIAS [63], MaSE [64], PASSI [65], Prometheus [66], SODA
[67,68].

A lot of approaches have been published about processes comparison (for
instance see: [69,70,71,72,73,74]) and we decided to adopt a plain one based on
a the consideration of a minimal set of process features. For each feature, we
examine if the process exhibits it or not; the list of features is described below:

Coverage of the Entire Lifecycle — The methodology designer should be
interested in developing a detailed and complete methodology from exist-
ing analysis till software deployment and maintenance. It is now widely ac-
cepted that the core workflows of a methodology are requirements collection,
analysis, design, development (also called implementation), deployment and
testing. Some methodologies cover the entire process of software engineering
while some others are more focused on a part of that.

Problem Type — The challenge of agent or multi-agent design processes is to
help the designers in building complex systems such as multi-agent systems
usually are. Two categories of works could be found: those which are general
high-level methodologies, and those which a focus on a specific application
context.

Underlying Agent Architecture — Different design processes often refer to
different agent architecture. Some processes look at BDI agents, some others
refer to the IEEE FIPA specifications and finally there are processes that
are not necessarily related to a specific architecture.

Origin — Some agent-oriented design processes are based on concepts and the-
ories developed in the object-oriented field. Sometimes they even explicitly
refer to an existing OO process (such as the Unified Process, UP).

14 http://agent.omg.org/

http://agent.omg.org/

www.manaraa.com

204 M. Cossentino et al.

Notation — Several design processes propose a proprietary notation to be
adopted in the work products they specify. In some cases notation is an ap-
plication or an extension of well known modeling languages (mainly UML),
in other situations notation is a specific one, in one case there even is the
proposal of a shared adoption of the same notation (as it happens in [75]).

Lifecycle — While modern object-oriented processes like UP are nowadays flat-
tered to the adoption of the incremental/iterative lifecycle, agent-oriented
approaches are still variegate and exhibit different solutions. Actually old
paradigms like waterfall are still adopted as well as the last iterative/
incremental and even agile ones (not adopted by any of the here discussed
processes but by some others).

Support for Model Transformations — The acceptance of a model-driven
engineering paradigm [76] is growing in popularity in the agent-oriented
landscape. According to that, (portions of) design models are obtained by
transformation of preceding ones thus reducing design effort and at the same
time increasing design quality. Several agent-oriented design process have
been conceived to support that at a different extent.

Design Support Tools — The availability of a specific support tool allows for
an easier enactment of the design process and usually increases the resulting
design quality thanks to a set of check on notation and semantic aspects of
the models.

Results of the comparison conducted on the basis of these criteria are reported in
Table 1. Other design processes are reported in literature although they have not
been compared with the previous ones. Among the others we may list: Agent-
PriME [77], ASEME [78], AOR [79], Gormas [80], MESSAGE [81], O-MaSE [57],
Tropos [82].

3.6 Roadmap

Multi-agent systems are increasingly used in different kinds of applications. De-
signing such systems requires handling different points of view about the system
to be done. Sometimes, the correct way to handle these perspective have just to
be discovered. For instance, ant-based simulation requires to take into account
different environments: the simulation environment composed in the simulation
participants; the client who provides the data and has to analyze and observe
the running system; and the MAS environment which is composed of resources
accessible by agents. Instead of building new development methods to deal with
these three environments, it seems more logical to investigate how one existing
method can be modified to take them into account, such as: PASSI which is
slightly modified to take into account simulation requirements[5].

Fragments represent a paradigm which enables to diminish the cost of method
definition by reusing existing ones. Although a couple of repositories already
exist, much work is still to be done in the field. Little experience exists on
widespread design processes composition and there is an obvious relationship
between the quality of fragment repository and the assembled process. More-
over, the opposite is true as well. The more processes will be composed by using

www.manaraa.com

Processes Engineering and AOSE 205

T
a
b
le

1
.
A

co
m

pa
ri
so

n
of

so
m

e
ag

en
t-

or
ie

nt
ed

de
si
gn

pr
oc

es
se

s.
(a

)
U

ni
fie

d
N

ot
at

io
n

pr
op

os
ed

in
[7

5]
.

C
ri
te

ri
on

A
D

E
L
F
E

A
SP

E
C

S
G

A
IA

IN
G

E
N

IA
S

M
A

SE
P
A

SS
I

P
R

O
M

E
T

H
E

U
S

S
O

D
A

E
nt

ir
e

L
ife

-
cy

cl
e

Y
es

Y
es

N
o

Y
es

N
o

Y
es

N
o

N
o

P
ro

bl
em

T
yp

e
O

pe
n

sy
st

em
s,

D
yn

am
ic

en
vi

-
ro

nm
en

t

H
ie

ra
rc

hi
ca

l
de

co
m

po
sa

bl
e

pr
ob

le
m

s

O
pe

n
sy

st
em

s
N

ot
sp

ec
ifi

ed
R

ob
ot

ic
Sy

s-
te

m
s

In
fo

rm
at

io
n

Sy
s-

te
m

s,
R

ob
ot

ic
Sy

st
em

s

G
en

er
al

P
ur

po
se

O
pe

n
sy

st
em

s

A
ge

nt
A

rc
hi

te
ct

ur
e

C
oo

pe
ra

ti
ve

A
ge

nt
s

H
ol

on
ic

ag
en

ts
N

ot
sp

ec
ifi

ed
B

D
I

N
ot

sp
ec

ifi
ed

F
IP

A
B

D
I

N
ot

sp
ec

ifi
ed

O
ri
gi

n
U

P
P
A

SS
I,

R
IO

N
ot

sp
ec

ifi
ed

U
P

U
P

U
P

N
ot

sp
ec

ifi
ed

N
ot

sp
ec

ifi
ed

N
ot

at
io

n
U

M
L

E
xt

en
si
on

U
M

L
ad

ap
ta

-
ti
on

N
on

sp
ec

ifi
c

Sp
ec

ifi
c

no
ta

-
ti
on

U
M

L
ad

ap
ta

ti
on

(a
)

U
M

L
ad

ap
ta

ti
on

(a
)

U
M

L
ad

ap
ta

ti
on

(a
)

T
ab

ul
ar

L
ife

-c
yc

le
M

od
el

It
er

at
iv

e
It

er
at

iv
e

/
In

-
cr

em
en

ta
l

W
at

er
fa

ll
It

er
at

iv
e

It
er

at
iv

e
It

er
at

iv
e

/
In

cr
e-

m
en

ta
l

It
er

at
iv

e
It

er
at

iv
e

M
D

E
Su

pp
or

t
Y

es
Y

es
N

o
Y

es
N

o
Y

es
N

o
Y

es

T
oo

ls
Y

es
N

o
N

o
Y

es
Y

es
Y

es
Y

es
N

o

www.manaraa.com

206 M. Cossentino et al.

fragment reuse, the more experience will be available on the field thus enabling
an improvement of fragment definitions and repository structures. The main
future research axis has to focus on three main elements: a language for frag-
ments description; the means to ensure the interoperability between fragments;
and tools to facilitate the fragments composition in order to produce the rele-
vant software processes. A language is needed that guarantees interoperability
of fragments developed by different designers and for different purpose. A main
obstacle towards this interoperability is the MAS meta-model. Fragments of pro-
cesses are associated with fragments of MAS specifications. Hence, a fragment
depends on a MAS meta-model. The lack of a unified MAS meta-model topic has
been long discussed in the AOSE community (just think about the debates held
during the Agentlink AOSE TFG events15) and nonetheless it is still an unsolved
issue. Besides the underlying MAS meta-model, the fragments must work with
each others and the problem here is quite closed to component architecture. In
any case, the work on languages for fragments description requires necessarily
the assistance of CAPE tools which validate the devised solutions. CAPE tools
permit designers to build the most relevant software processes regarding the ap-
plication and the designers team expertise. Several steps can be followed: from
the hand-made static built process to the self-design process; and from process
determined at the beginning of the software development to a dynamic process
adapted to the development status.

Other open research issues will briefly discussed below:

– The definition of application specific processes. Even considering the amount
of existing processes as a good starting point for several custom products,
there still is the need for specific approaches related to specific domains.

– The integration of agents with services and the related (web service) tech-
nology. Web services are nowadays widely spread and represent a good and
affordable solution for the development of highly distributed systems. Where
can agents contribute in a development scenario dominated by services?
Probably the answer lays in the essence of agency: agents are autonomous,
proactive, and social. These properties are not necessarily shared by services
and they provide an invaluable support in the creation of a new abstraction
and design layer.

– Agent reasoning techniques. They are not a new issue but they are always
an important topic. Too many times agents are realized as simple state-
charts. Introducing advanced reasoning capabilities in agents is a complex
task but this is at the same time one of the crucial factors for distinguishing
agent-oriented systems from traditional ones.

– Common pitfalls in design processes. Testing, deployment and formalized
design techniques (patterns) issues have not received, in the agent-oriented
field, the same attention they received in classic software engineering despite
they are worth to. Testing techniques are often taken from object-oriented
systems and adapted with minor changes. What about testing the success-
ful implementation of a certain degree of autonomy or self-organization? No

15 http://www.pa.icar.cnr.it/cossentino/al3tf3/

http://www.pa.icar.cnr.it/cossentino/al3tf3/

www.manaraa.com

Processes Engineering and AOSE 207

definitive answer still exist. Deployment is totally neglected by most of agent-
oriented approaches but this should be one of the strength points of MAS
(because of their easy distribution). In the era of cloud-computing, the agent
community has a great opportunity. Agents may take profit of the elabora-
tion infrastructure proposed by this paradigm and conversely may offer to
cloud-computing new ideas for load balancing and distribution. Finally very
few agent designers accept the use of design patterns as a daily practice.
Several papers have been written on the matter and some pattern reposito-
ries exist in literature but the diffusion of them in process employment (but
also conception) is still limited.

– Agent modeling languages. This is another long lasting issue. It is strictly
related to the research about MAS meta-model but the perspective may be
different. Defining a MAS meta-model means defining what are the elements
that will be instantiated in the design of a new MAS. Defining a MAS model-
ing language means defining how the instances will be represented at design
time. The link between the two is tight but there is not (necessarily) a one
to one link.

4 Conclusion

SPE can bring a number of benefits to AOSE. One is the capability of critically
analyzing our own development process by decomposing them into fragments.
Another one is enabling the construction of new or altered development process
as our knowledge of the needs of concrete domain problems and the performance
of applied development processes grow.

While the research on SPE is lively in the general area of software engineering,
the complexity of the processes to be modeled and built make the agent-oriented
framework possibly the most suitable place for new approaches and solutions. In
the AOSE field, current research in SPE aims at providing more flexible software
processes taking into account the work already done by AOSE methodology
designers, by re-using the most relevant parts (fragments) of any methodology.

At mid-term, research on SPE will likely be concerned with the development
of tools supporting SPE, whereas the long-term perspective looks towards a
self-designed software processes. Along these lines several difficulties should be
overcome, among which the interoperability of fragments and the situational
context representation and use seem to be the main ones.

References

1. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based devel-
opment. Journal of Engineering Applications of Artificial Intelligence 18(2), 205–
222 (2005)

2. Fuggetta, A.: Software process: a roadmap. In: ICSE 2000: Proceedings of the
Conference on The Future of Software Engineering, pp. 25–34. ACM Press, New
York (2000)

www.manaraa.com

208 M. Cossentino et al.

3. Picard, G., Bernon, C., Gleizes, M.P.: Etto: Emergent timetabling organization.
In: [83]

4. George, J.P., Peyruqueou, S., Regis, C., Glize, P.: Experiencing self-adaptive mas
for real-time decision support systems. In: Int. Conf. on Practical Applications of
Agents and Multiagent Systems (PAAMS 2009). Springer, Heidelberg (2009)

5. Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Passim: A
simulation-based process for the development of multi-agent systems. International
Journal on Agent Oriented Software Engineering, IJAOSE (2008)

6. Morandini, M., Migeon, F., Penserini, L., Maurel, C., Perini, A., Gleizes, M.P.:
A goal-oriented approach for modelling self-organising MAS. In: Aldewereld, H.,
Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 33–48. Springer,
Heidelberg (2009)

7. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

8. Cockburn, A.: Selecting a project’s methodology. IEEE Software 17(4), 64–71
(2000)

9. Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific
methodology construction. In: Challenges and Strategies for Research in Systems
Development, pp. 257–269 (1992)

10. ter Hofstede, H.A.M., Verhoef, T.F.: On the feasibility of situational method engi-
neering. Information Systems 22(6/7), 401–422 (1997)

11. Brinkkemper, S.: Method engineering: engineering the information systems devel-
opment methods and tools. Information and Software Technology 37(11) (1996)

12. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In:
Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp.
267–283. Springer, Heidelberg (2001)

13. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples
Using the OPEN Process Framework (OPF). Annals of Software Engineering 14(1),
341–362 (2002)

14. Hamsen, A.: Situational Method Engineering. Moret Ernst & Young (1997)
15. Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-

duction. Addison-Wesley, Reading (2002)
16. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A metamodel for assess-

able software development methodologies. Software Quality Journal 13(2), 195–214
(2005)

17. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems 24 (1999)

18. Ralyté, J.: Towards situational methods for information systems development: engi-
neering reusable method chunks. In: 13th International Conference on Information
Systems Development. Advances in Theory, Practice and Education, pp. 271–282
(2004)

19. Henderson-Sellers, B., Serour, M., McBride, T., Gonzalez-Perez, C., Dagher, L.:
Process construction and customization. Journal of Universal Computer Sci-
ence 10(3) (2004)

20. OMG: Software process engineering metamodel. Version 2.0. Object Management
Group (2007)

21. Si-Said, S., Roland, C., Grosz, G.: Mentor: A computer aided requirements engi-
neering environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.)
CAiSE 1996. LNCS, vol. 1080, pp. 22–43. Springer, Heidelberg (1996)

22. Harmsen, A., Ernst, M., Twente, U.: Situational Method Engineering. Moret Ernst
& Young Management Consultants (1997)

www.manaraa.com

Processes Engineering and AOSE 209

23. Brinkkemper, S., Saeki, M., Harmsen, F.: A method engineering language for the
description of systems development methods. In: Dittrich, K.R., Geppert, A., Nor-
rie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 473–476. Springer, Heidelberg
(2001)

24. Saeki, M., Iguchi, K., Wen-yin, K., Shinohara, M.: A meta-model for represent-
ing software specification & design methods. In: Proceedings of the IFIP WG8.1
Working Conference on Information System Development Process, pp. 149–166.
North-Holland Publishing Co., Amsterdam (1993)

25. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE) 1(1), 91–121 (2007)

26. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the SPEM specifica-
tions to represent agent oriented methodologies. In: Luck, M., Gomez-Sanz, J.J.
(eds.) AOSE 2008. LNCS, vol. 5386, pp. 46–59. Springer, Heidelberg (2009)

27. Seidita, V., Cossentino, M., Galland, S., Gaud, N., Hilaire, V., Koukam, A.,
Gaglio, S.: The metamodel: A starting point for design processes construc-
tion. International Journal of Software Engineering and Knowledge Engineering
(IJSEKE) 20(4), 575–608 (2010)

28. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent Oriented Software Engineering 1(1), 91–121 (2007)

29. Osterweil, L.: Software processes are software too. In: 9th International Conference
on Software Engineering (ICSE 1987), pp. 2–13. IEEE CS Press, Los Alamitos
(1987)

30. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: ASPECS: an agent-
oriented software process for engineering complex systems. International Journal of
Autonomous Agents and Multi-Agent Systems (IJAAMAS) 20(2), 260–304 (2010)

31. Cossentino, M., Gaglio, S., Seidita, V.: Adapting PASSI to support a goal ori-
ented approach: a situational method engineering experiment. In: 5th European
Workshop on Multi-Agent Systems, EUMAS 2007 (2007)

32. Gleizes, M.P., Camps, V., George, J.P., Capera, D.: Engineering systems which
generate emergent functionalities. In: Weyns, D., Brueckner, S., Demazeau, Y.E.
(eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049, pp. 58–75. Springer, Heidelberg
(2008)

33. Jorquera, T., Bonjean, N., Gleizes, M.P., Maurel, C., Migeon, F.: Combining
methodologies fragments using self-organizing MAS. Technical Report IRIT/RR-
2010-4-FR, IRIT (2010)

34. Jorquera, T., Maurel, C., Migeon, F., Gleizes, M.P., Bonjean, N., Bernon, C.:
ADELFE fragmentation. Technical Report IRIT/RR-2009-26-FR, IRIT (2009)

35. Cossentino, M., Sabatucci, L., Seidita, V.: Method fragments from the PASSI
process. Technical Report RT-ICAR-21-03, Istituto di Calcolo e Reti ad Alte
Prestazioni - Consiglio Nazionale delle Ricerche (2006)

36. Debenham, J., Henderson-Sellers, B.: Designing agent-based process systems – ex-
tending the OPEN process framework. In: Intelligent Agent Software Engineering,
pp. 160–190. Idea Group Publishing, USA (2003)

37. Henderson-Sellers, B., Debenham, J., Tran, Q.-N.N., Cossentino, M., Low, G.: Iden-
tification of reusable method fragments from the PASSI agent-oriented methodol-
ogy. In: Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS
2005. LNCS (LNAI), vol. 3529, pp. 95–110. Springer, Heidelberg (2006)

www.manaraa.com

210 M. Cossentino et al.

38. Henderson-Sellers, B., Giorgini, P., Bresciani, P.: Evaluating the potential for in-
tegrating the OPEN and Tropos metamodels. In: Al-Ani, B., Arabnia, H.R., Mun,
Y. (eds.) International Conference on Software Engineering Research and Practice,
SERP 2003, USA, June 23-26, vol. 2, pp. 992–995. CSREA Press, Las Vegas (2003)

39. ISO/IEC: Software Engineering — Metamodel for Development Methodologies.
Fdis 24744 edn. (2006)

40. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineer-
ing. Wiley, Chichester (2008)

41. Gonzalez-Perez, C., Henderson-Sellers, B.: On the ease of extending a powertype-
based methodology metamodel. In: 2nd Workshop on Metamodelling, WoMM 2006
(2006)

42. Rumbaugh, J.E.: Notation notes: Principles for choosing notation. JOOP 9(2),
11–14 (1996)

43. Tran, Q.-N.N., Henderson-Sellers, B., Debenham, J.: Incorporating the elements
of the MASE methodology into agent OPEN. In: 6th International Conference on
Enterprise Information Systems, ICEIS 2004 (2004)

44. Henderson-Sellers, B., Debenham, J., Tran, Q.-N.N.: Adding Agent-Oriented Con-
cepts Derived from Gaia to Agent OPEN. In: Persson, A., Stirna, J. (eds.) CAiSE
2004. LNCS, vol. 3084, pp. 98–111. Springer, Heidelberg (2004)

45. Henderson-Sellers, B., Tran, Q.-N.N., Debenham, J.: Incorporating Elements from
the Prometheus Agent-Oriented Methodology in the OPEN Process Framework.
In: Bresciani, P., Giorgini, P., Henderson-Sellers, B., Low, G., Winikoff, M. (eds.)
AOIS 2004. LNCS (LNAI), vol. 3508, pp. 140–156. Springer, Heidelberg (2005)

46. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. In: Workshop From Objects To Agents, WOA 2006 (2006)

47. Cossentino, M., Sabatucci, L., Seidita, V.: A collaborative tool for designing and
enacting design processes. In: Shin, S.Y., Ossowski, S., Menezes, R., Viroli, M.
(eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009), Hon-
olulu, Hawai’i, USA, vol. 2, pp. 715–721. ACM, New York (2009)

48. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of
some multi-agent meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.)
AOSE 2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

49. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A metamodel for assess-
able software development methodologies. Software Quality Journal 13(2), 195–214
(2005)

50. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamod-
els and the creation of a new generic standard. Information & Software Technol-
ogy 47(1), 49–65 (2005)

51. Molesini, A., Denti, E., Omicini, A.: From AO methodologies to MAS infrastruc-
tures: The SODA case study. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros,
G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995, pp. 300–317. Springer, Heidel-
berg (2008)

52. Molesini, A., Denti, E., Omicini, A.: MAS meta-models on test: UML vs. OPM in
the SODA case study. In: [83], pp. 163–172

53. Grupo de Investigación en Agentes Software: Ingenieŕıa y Aplicaciones (2009),
Home page, http://grasia.fdi.ucm.es/ingenias/metamodel/

54. Beydoun, G., Low, G.C., Henderson-Sellers, B., Mouratidis, H., Gómez-Sanz, J.J.,
Pavón, J., Gonzalez-Perez, C.: FAML: A generic metamodel for MAS development.
IEEE Transactions on Software Engineering 35(6), 841–863 (2009)

http://grasia.fdi.ucm.es/ingenias/metamodel/

www.manaraa.com

Processes Engineering and AOSE 211

55. Dam, K.H., Winikoff, M., Padgham, L.: An agent-oriented approach to change
propagation in software evolution. In: Australian Software Engineering Conference,
pp. 309–318. IEEE Computer Society, Los Alamitos (2006)

56. Giorgini, P., Mylopoulos, J., Perini, A., Susi, A.: The Tropos metamodel and its
use. Informatica 29, 401–408 (2005)

57. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.L.: O-
maSE: A customizable approach to developing multiagent development processes.
In: Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering VIII.
LNCS, vol. 4951, pp. 1–15. Springer, Heidelberg (2008)

58. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and Agile PASSI
MAS meta-models compared with a unifying proposal. In: [83], pp. 183–192

59. Beydoun, G., Gonzalez-Perez, C., Low, G., Henderson-Sellers, B.: Synthesis of a
generic MAS metamodel. In: 4th International Workshop on Software Engineering
for Large-scale Multi-Agent Systems (SELMAS 2005), pp. 1–5. ACM, New York
(2005)

60. Henderson-Sellers, B., Gonzalez-Perez, C.: Standardizing methodology metamod-
elling and notation: An iso exemplar. In: Kaschek, R., Kop, C., Steinberger, C.,
Fliedl, G. (eds.) UNISCON. Lecture Notes in Business Information Processing,
vol. 5, pp. 1–12. Springer, Heidelberg (2008)

61. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering adaptive multi-
agent systems: the ADELFE methodology. In: Agent Oriented Methodologies, pp.
172–202. Idea Group Publishing, USA (2005)

62. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3), 317–370 (2003)

63. Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: [84], ch. IX, pp. 236–276

64. DeLoach, S.A., Kumar, M.: Multi-agent systems engineering: An overview and case
study. In: [84], ch. XI, pp. 317–340

65. Cossentino, M.: From requirements to code with the PASSI methodology. In: [84],
ch. IV, pp. 79–106

66. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelli-
gent agents. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 174–185. Springer, Heidelberg (2003)

67. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 185–193. Springer, Heidelberg (2001)

68. Molesini, A., Zhang, S.-W., Denti, E., Ricci, A.: SODA: A roadmap to artefacts. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963,
pp. 49–62. Springer, Heidelberg (2006)

69. Cernuzzi, L., Rossi, G., Plata, L.: On the evaluation of agent oriented modeling
methods. In: Workshop on Agent Oriented Methodology, pp. 21–30 (2002)

70. Bernon, C., Gleizes, M.P., Picard, G., Glize, P.: The ADELFE methodology for an
intranet system design. In: Giorgini, P., Lespérance, Y., Wagner, G., Yu, E. (eds.)
4th International Bi-Conference Workshop on Agent-Oriented Information Systems
(AOIS 2002), Toronto, Canada. CAiSE 2002, CEUR Workshop Proceedings, vol. 57
(2002)

71. Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodolo-
gies. In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS
(LNAI), vol. 3030, pp. 94–109. Springer, Heidelberg (2004)

www.manaraa.com

212 M. Cossentino et al.

72. Dam, K.H.: Comparing agent-oriented methodologies. In: Giorgini, P., Henderson-
Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS (LNAI), vol. 3030, pp. 78–93.
Springer, Heidelberg (2004)

73. Luck, M., Ashri, R., D’Inverno, M.: Agent-Based Software Development. Artech
House, Norwood (2004)

74. Tran, Q.N.N., Low, G.C.: Comparison of ten agent-oriented methodologies. In:
Agent Oriented Methodologies, pp. 341–367. Idea Group Publishing, USA (2005)

75. Padgham, L., Winikoff, M., DeLoach, S., Cossentino, M.: A unified graphical nota-
tion for AOSE. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386,
pp. 116–130. Springer, Heidelberg (2009)

76. Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25–31 (2006)
77. Miles, S., Groth, P.T., Munroe, S., Luck, M., Moreau, L.: AgentPrIMe: Adapting

MAS designs to build confidence. In: Luck, M., Padgham, L. (eds.) Agent-Oriented
Software Engineering VIII. LNCS, vol. 4951, Springer, Heidelberg (2008)

78. Spanoudakis, N., Moraitis, P.: Development with ASEME. In: 11th International
Workshop on 11th International Workshop on Agent Oriented Software Engineer-
ing, AOSE (2010)

79. Wagner, G.: Agent-oriented analysis and design of organizational information sys-
tem. In: 4th IEEE International Baltic Workshop on Databases and Information
Systems (2000)

80. Argente, E., Botti, V., Vincente, J.: GORMAS: An organizational-oriented
methodological guideline for open MAS. In: Proc. of Agent-Oriented Software En-
gineering (AOSE) Workshop (2009)

81. Garijo, F.J., Gòmez-Sanz, J.J., Massonet, P.: The MESSAGE methodoly for agent-
oriented analysis and design. In: [84], ch. VIII, pp. 203–235

82. Castro, J., Kolp, M., Mylopoulos, J.: A requirements-driven development method-
ology. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS,
vol. 2068, pp. 108–123. Springer, Heidelberg (2001)

83. Pěchouček, M., Petta, P., Varga, L.Z. (eds.): CEEMAS 2005. LNCS (LNAI),
vol. 3690. Springer, Heidelberg (2005)

84. Henderson-Sellers, B., Giorgini, P.: Agent Oriented Methodologies. Idea Group
Publishing, Hershey (2005)

www.manaraa.com

Formal Methods in Agent-Oriented Software
Engineering

Amal El Fallah-Seghrouchni1, Jorge J. Gomez-Sanz2, and Munindar P. Singh3

1 LIP6 - University Pierre and Marie Curie,
104, Avenue du Président Kennedy, 75016, Paris, France

Amal.Elfallah@lip6.fr
2 GRASIA Research Group, Universidad Complutense de Madrid

Avda. Complutense, 28040 Madrid, Spain
jjgomez@fdi.ucm.es

3 Department of Computer Science, North Carolina State University,
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Abstract. There is a growing interest among agent and multiagent sys-
tem developers for formal methods. Formal methods are means to define
and realize correct specifications of multiagent system. The benefits of
formal methods become clearer when we recognize the cost of developing
a defective multiagent system. This paper seeks to introduce engineers
to the possibilities of applying formal methods for multiagent systems.
To this end, it discusses selected formal methods approaches for multi-
agent systems for which there is tool support. These works have been
organized into two broad categories: those formal methods constituting
a development method in themselves and those intended to complement
an existing development method.

Keywords: Formal methods, AOSE, software engineering, specification,
verification.

1 Introduction

Agent-Oriented Software Engineering (AOSE) borrows software engineering con-
cepts and techniques with the intention of enabling a controlled development of
multiagent systems (MAS). This fits software engineering goals, since software
engineering is about making software development less an art and more a disci-
pline. It requires, among others, defining engineering activities to be structured
using a method. According to the Software Engineering Book of Knowledge [38],
a method imposes structure on a software engineering activity to make the activ-
ity more systematic and therefore presumably more likely to succeed. A method
may be heuristic (structured, data-oriented, or object-oriented); prototyping-
based; or formal.

Literature in AOSE has mainly emphasized the heuristic and prototyping-
based method approaches, which can be found in reviews of agent oriented

M.-P. Gleizes and J.J. Gomez-Sanz (Eds.): AOSE 2009, LNCS 6038, pp. 213–228, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.manaraa.com

214 A. El Fallah-Seghrouchni, J.J. Gomez-Sanz, and M.P. Singh

methodologies such as Henderson-Sellers and Giorgini [36] or Bergenti et al. [7].
This survey focuses on the third category, namely, to formal methods. A formal
method refers to the use of mathematically based methods which are typically
applied in form of specification language or notations; the transformation of
specifications; or verification [38].

Since our context is software engineering, this survey emphasizes those works
illustrating the contribution of a formal method to software development. Con-
cretely, this survey addresses those formal method solutions that serve a well-
defined, discrete function in AOSE and which are assisted by available tools.
Because existing AOSE approaches address the whole gamut of the stages of
software development, formal methods can be applied to these stages as well,
including analysis, design, implementation, testing, validation, and verification.
Formal methods also apply during the main phases of the software life cycle:
downstream, upstream, and during deployment.

Taking these ideas into account, we organize the paper as follows. Section 2
describes works that emphasize the formal representation and tooling aspects of
formal methods. This enables us to reuse the techniques in an existing AOSE
methodology. Section 3 moves up the food chain and describes works that empha-
size the methodological aspects of formal methods, i.e., the way from a specifi-
cation to the desired multiagent system. Section 4 provides additional references
to other works which can be used to complement this survey. Finally, Section 5
concludes with a summary.

2 Formal Specification and Tools

Formal specification involves the use of a formal notation to describe the system
under development. A formal specification can be as precise and complex as to
resemble an executable program, but that is not typically valuable. Specifying
is not programming, though it may be the case some specifications can be in-
terpreted and executed. Hence, we do not consider agent-oriented programming
languages unless they serve for specification purposes rather than implemen-
tation. As a consequence, we emphasize works carrying out formal derivation
or verification on the resulting specification and always with the assistance of
available software tools.

2.1 Formal Specification

The formal representation methods listed here fall into four main themes: (1)
first-order logic and one of its variants, the situation calculus; (2) temporal logics;
(3) process algebras; and (4) automata.

The first theme includes the SMART framework from D’Inverno and Luck [24]
and Cognitive Agents Specification Language (CASL) from [56]. The SMART
framework [24] is formalized using the Z specification language, and supports
the concepts of entities, objects, agents (objects with goals), and autonomous
agents (agents with motivations). The SMART framework takes advantage of

www.manaraa.com

Formal Methods in Agent-Oriented Software Engineering 215

various Z tools to perform simulations and verify properties. A MAS specified
with SMART is built using the actSMART agent implementation [6], which spe-
cializes AgentSpeak(L) to adapt to the principles of SMART. Hilaire et al. [37]
object that Z cannot be used to address reactive aspects, and propose combin-
ing statecharts (an extension of finite automata to support parallelism, nested
states, and broadcast communication for events) and Object-Z to provide MAS
specifications. The combination of statecharts and Object-Z is a multiformalism
specification called OZS. ForMAAD [34], reviewed in Section 3, offers a hybrid
approach combining Z and temporal logic that enables us to talk about dynamic
aspects of the MAS constituents.

Situation calculus gives first-class status to situations and captures the in-
tuition of transitions between situations. Cognitive Agents Specification Lan-
guage (CASL) [56] [57], based on the situation calculus, is an extension of the
well-known ConGolog. CASL provides a verification environment based on the
Prototype Verification System (PVS), called CASLve. CASL can express what
the mental states of the agents, their goals, and the effects of their actions.

In the second theme, temporal logics explicitly support the concept of time.
Fisher [26] reviews different implementations and techniques in the context of
software agents. Several works apply temporal logics as the basis for specification
languages. This is the case of Formal Tropos [47] [29] and ForMAAD [34].

Process algebras have been studied as well as formalisms for specifying MAS.
Though applied to formalize different aspects of existing MAS, as the formal-
ization of Cougaar agent architecture [33], there is a gap in the literature in
this respect [63]. Despite the gap, it is possible to find works that, rather than
declaring the semantics of an existing agent framework or language, provide an
intuitive orientation as specification languages. Specific examples are the API-
calculus [48] and CSP‖B [54].

The API-calculus, from Rahimi et al. [48], is an algebra for agents that ad-
dresses mobility, security, natural grouping, and intelligence. Visualization of
API-calculus specifications can be made with the ACVisualizer [3]. Some of
these ideas have crystallized into the CAML process algebra [4], which regards
each agent as a tuple of knowledge, conditions, capabilities, an event queue, plan,
and an intention queue.

CSP‖B [54] is a promising specification method that can be used to specify
multiagent systems, as Colin et al. [18] show for a vehicle coordination problem.
In CSP‖B, each agent is a process and it can be made of either other processes
or B machines. Hence, communication is expressed mainly with CSP, while the
internal apparatus of each agent combines CSP and the B notation. B machines
require the definition of invariants (properties that always hold) and operations
that declare how the state is modified. CSP requires us to express communica-
tion channels and the expected behavior depending on the kind of information
arriving from a channel. This notation is supported by two tools: for CSP sup-
port, FDR2 (http://www.fsel.com/) and for the B method, B4FREE http://
www.b4free.com

http://www.fsel.com/
http://www.b4free.com
http://www.b4free.com

www.manaraa.com

216 A. El Fallah-Seghrouchni, J.J. Gomez-Sanz, and M.P. Singh

Aside from the algebraic and logic-based approaches, we consider transition
systems and automata-based approaches. Such approaches have been used to
describe dynamic aspects within MAS, especially communications. Automata
are of many varieties. Colored Petri Nets (CPNs) [44] are used to capture
information coming from AUML protocol diagrams. CPNs can be analyzed
with CPN tools (http://wiki.daimi.au.dk/cpntools/cpntools.wiki). The
internals of the agents can also be described with automata, as illustrated by
Fallah-Seghrouchni and colleagues [25]. They use hybrid automata (made of an
automaton and a set of variables associated with the transitions of the automa-
ton) to represent a multiagent planning framework that has been applied in an
industrial context, namely, tactical aircraft simulation at Dassault-Aviation in
France. The multiagent plan is a synchronized network of hybrid automata, each
automaton representing an individual plan of an agent. Several mechanisms of
control and validation are proposed and base on HyTech (http://embedded.
eecs.berkeley.edu/research/hytech/) model checker to verify properties.

An automata-based representation is applied in the Interpreted Systems Pro-
gramming Language (ISPL). ISPL is a language to define MAS used as input for
the MCMAS [42], a model checker tool. ISPL can capture a variety of modeling
concepts including time, knowledge, and obligations. The description resembles
an automaton, since it involves the declaration of initial states and the evolution
of the variables defining the state.

To conclude, automata can be combined with other formalisms, as shown by
Hilaire et al. [37], who combine statecharts with Z notation to specify systems.
The specification can be then processed using the STATEMATE [35] tool to
perform prototyping and simulation.

2.2 Tools for Verification

One of the advantages of having a formal specification is being able to determine
whether the specification satisfies some desired properties. In most cases, the
desirable properties of the system are determined during the system specification,
where initial requirements are identified. Examples of such properties can be
found in Brazier [13] and Singh [58]. There are few generic properties, and most
of them refer to interacting protocols and the livelocks or deadlocks among the
agents. In general, it is the developer, using as starting point the requirements of
the system, who determines what properties must be satisfied. Once a property
is identified, it must be expressed using a suitable formalism, e.g., using temporal
or epistemic logics.

Tools for verification require the object of the analysis to be declared using
a tool-specific language. The degree of compatibility between this language and
the one used for the specification varies. Sometimes, the specification itself can
be supplied as is to the tool. In other cases, a translation is required, forcing us
to ensure the correctness of the translation and that a property holding on the
translation holds in the original specification as well [17].

http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://embedded.eecs.berkeley.edu/research/hytech/
http://embedded.eecs.berkeley.edu/research/hytech/

www.manaraa.com

Formal Methods in Agent-Oriented Software Engineering 217

In general, verifying the whole specification can be expensive. This forces us
to either focus on different aspects or parts of the system and to progress in-
crementally. In this case, if a property is verified in a piece of the specification,
it is desirable that the property remains when other pieces of the specification
are included, or when the specification is refined. Some authors talk about the
compositionality of properties, something which has been specially explored in
the DESIRE framework [14]. DESIRE applies compositional verification, where
the properties of the system as a whole are derived from properties of the cor-
responding agents, and the properties of each agent are derived from its consti-
tuting components. DESIRE comes with a software environment that has been
validated via various projects.

Finally, when verifying properties in software, there is an important reminder:
some properties, such as the halting problem for Turing machines, are undecid-
able; others may be decidable but intractable. With the above ideas in mind,
we can understand the possibilities and disadvantages of the tools supporting
verification of properties in system specifications. The study of existing works
in the agent literature has motivated a division of tools into two major groups:
model checking and theorem proving tools.

Model Checking. Model checking is about verifying if a specified logical for-
mula is true in a specified model. Usually the formula is in temporal logic and
the model is presented via a finite automaton. Temporal logic formulas help
express properties that never hold, always hold, or are satisfied in some future
states. The model represents the possible evolutions of the states of a software
system such as a MAS. When representing a software system, the state space
to explore can become too large to be tractable. Current model checking works
rely on the capability of the model checker to reduce the state search space,
though, sometimes, it is required to devise new techniques [10]. As mentioned
earlier, another alternative consists in not translating the whole specification but
a part, trying to focus on specific aspects of the system whose analysis requires
less computation power. It happens that the system under study may require an
infinite search space. Those cases will require applying bounded model checking
or refer to advanced model checking works dealing with unbounded systems [45].

Existing works on model checking and MAS specifications use diverse tools.
Several works use Spin, which is a linear-time model checker, meaning that it
considers individual runs or computation paths (http://spinroot.com/). Other
works use the JavaPathFinder tool, which can be downloaded from http://
babelfish.arc.nasa.gov/trac/jpf. The uses of these tools and the kinds of
properties each work considers are reviewed below.

Lacey and DeLoach [40] illustrate the application of the Spin model check-
ing tool to MAS specifications created with agenTool. Interactions are expressed
in agenTool using UML-like statecharts. Lacey and DeLoach introduce an algo-
rithm that converts statecharts into Promela code, which is the input required by
Spin. Lacey and DeLoach use sequence diagrams to describe expected sequences of
messages. General properties verified with Spin are deadlocks (conversation ends
in other state different from one of the end states defined in the specification),

http://spinroot.com/
http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf

www.manaraa.com

218 A. El Fallah-Seghrouchni, J.J. Gomez-Sanz, and M.P. Singh

liveness (looking for occurrences of all states of the conversation at least in one
execution path), and unused states or messages.

MABLE [65] is a programming language for agents enriched with constructs
for verification. It takes advantage of Spin by translating a MABLE program
into Promela. Properties regard the compliance with the semantics of commu-
nicative acts. This implies verifying the preconditions and postconditions of each
communicative act are met.

Desai et al. [23] address the problem of verifying commitment-based interac-
tion protocols by mapping commitments and protocols to Promela representa-
tions for verification using Spin. A protocol enactment is deemed noncompliant if
it terminates in a state where an unconditional commitment is still active. Also,
upon completion, there should be no pending messages to process. There are
specific properties that may need to be defined, like, in a buyer-seller scenario,
if a buyer rejects a quote, no goods should be shipped.

Dennis et al. [21] introduce a generic framework, the Agent Infrastructure
Layer AIL, aiming to check not only what an agent does, but also its intentions.
AIL captures the commonalities among some programming languages [22]. The
idea is to capture the essence of a representative collection of programming lan-
guages for agents, specifically, AgentSpeak, 3APL, Jadex, and MetateM. The
result would be transformed into a Java program, which then would be run
using the Agent Java PathFinder, an extension of Java PathFinder. This exten-
sion provides additional state reduction techniques [10]. In the example, authors
illustrate the verification of postconditions of plan execution.

Other hybrid approaches combine different tools. Spin and Java PathFinder
are used in [11] as part of the CASP (Checking AgentSpeak Programs) toolkit
[9]. The work assumes a multiagent system developed using AgentSpeakF , a
variant of AgentSpeakL [49] that represents agents using finite state automata.
This program is translated into Promela to be used as input to Spin. Also,
this work shows how Java PathFinder model checking tools can be applied to
AgentSpeak when the same AgentSpeak code is translated into Java. Verified
properties regard the beliefs of agents and their intentions along any possible
execution. These properties are specific to the case studies handled by authors
and are not intuitively reusable.

Hilaire et al. [37], in their RIO framework, apply Harels [35] STATEMATE
environment for the prototyping and the simulation of statecharts to conduct ver-
ification and prototyping. STATEMATE permits the simulation and prototyping
of the statechart specifications. Hilaire et al. report as well to have used SAL 2
[20], which provides high performance symbolic and bounded model checkers.
Hilaire et al. suggest combining bounded model checking with inductive theo-
rem proving to deal with combinatorial explosion of states, though no specific
software tools for this are mentioned. Verified properties are particular to the
problem used as case study: two robots having to explore a narrow corridor and
how they coordinate to let the other pass. In this case study, it is shown that
the least constrained robot becomes altruist.

www.manaraa.com

Formal Methods in Agent-Oriented Software Engineering 219

Some works with Hybrid automata [25] report to have used HyTech. The
properties addressed include task covering by an automaton, the availability of
resources, and multiagent plan feasibility.

NuSMV verifies formulas expressed in the well-known branching-time tempo-
ral logic called Computation Tree Logic (CTL) [16], which enables expressing
properties dealing with all or some future computations (branches) of a software
system. Telang and Singh [59] employ NuSMV as a basis for verifying whether
the sequence diagrams corresponding to a system realization satisfy the commit-
ments included in a business model.

Lomuscio et al. [42] have created MCMAS, a model checker tool which specif-
ically deals with agent-based specifications and scenarios. The MCMAS input
description language is called ISPL and was introduced above. Properties verified
in the case studies are not reusable, but are expressed using CTL and epistemic
operators, operators for reasoning about the actions of the agents, and strategies.
Hence, in MCMAS, it is possible to make references to what each agent know
or does not know along the time. MCMAS admits as well fairness formulae (to
be assumed as always true), and definition of the number of agents to be used
in the proof.

Recently, Gerard and Singh have developed a tool called Proton for reasoning
about protocol specifications [30]. Proton addresses the problem of whether a
protocol refines another, taking into account differences in roles and the specific
interactions performed in each protocol. For example, we can think of Pay as a
protocol by which a payer pays a payee, thereby discharging a suitable commit-
ment. Intuitively, the protocol PayByCheck accomplishes payment as well and
should be considered a refinement of Pay even though it involves an additional
role (the bank) and involves entirely different messages from Pay. Proton takes
two protocol specifications along with a conceptual mapping from one protocol
to another and generates suitable ISPL and CTL specifications, which when run
through MCMAS verify if the refinement holds.

Riemsdijk et al. [50] propose BUpL, the Belief Update programming Language
implemented with Maude. BUpL programs can be executed, tested, and verified.
Verification is carried out using the LTL model checker from Maude. The prop-
erties are expressed in Linear Temporal Logic and the developer must identify
the elements from the program which represents the states of the system, and
the atomic predicates that can evaluated in those states. Properties that can
be verified mainly involve the reachability of the identified states. For instance,
that a goal should be reached and that the agent never comes to believe some
information.

Automated Theorem Proving. Automated theorem proving consists in, from
a set of theories and axioms, affirming the validity of a formula. In the agent
literature, it has been applied thoroughly in works related with computational
logic, such as MetateM [28] and ConGolog [31]. Nevertheless, since their use
requires more training than the model checking alternative, it is harder to find
proposals where theorem proving tools take an active part in the development.
As an example, four works are listed below.

www.manaraa.com

220 A. El Fallah-Seghrouchni, J.J. Gomez-Sanz, and M.P. Singh

The Prototype Verification System (PVS) is a theorem prover that takes as
input higher-order logic predicates and can be downloaded from http://pvs.
csl.sri.com/. It is used in the construction of the CASLve, which supports the
verification of CASL specifications [55] [41]. The verified properties concern the
desirable properties of the specification language necessary to progress in the
verification effort. Aside from these, Shapiro and colleagues provide examples
of problem specific properties related to the problem requirements, for example
that in a meeting scheduler, the participants sit together in the meeting table
at some point.

DESIRE [12] uses the Temporal Traces Language where the dynamics of the
system are represented as an evolution of states of agents and an environment
over time. It can be used to specify the system and observe its behavior prior to
execution. In general, approaches using temporal logics can take advantage on
existing theorem provers for temporal logic [26].

SOCS-SI is a tool that uses the SCIFF Proof [15] procedure to check the
compliance of an agent interaction with respect to a protocol declaration. It is
available from http://lia.deis.unibo.it/sciff. SCIFF is an abductive proof
method and is implemented using Prolog. SCIFF does the verification using
partial knowledge, something possible due to the abductive nature of the proof.
It does not declare a state machine, but indicates which actions are forbidden,
required, and possible.

Alechina et al. [5] propose a simplified version of 3APL, called SimpleAPL,
where liveness and safety properties can be proven. Programs are translated into
Propositional Dynamic Logic (PDL). The properties to verify are written in PDL
as well, and then proven by means of PDL theorem provers. Alechina et al. use
MSPASS (available from http://www.cs.man.ac.uk/~schmidt/mspass which
has been incorporated into SPASS http://project.kjsmith.net/) and PDL-
Tableau (http://www.cs.man.ac.uk/~schmidt/pdl-tableau/). The proper-
ties verified deal with the expected state of the system, including its agents,
at some point.

3 Developing with Formal Methods

The formal development of MAS involves the definition of a methodology where
formal methods play a dominant role. Section 2 introduced several formal no-
tations and verification tools. Nevertheless, development itself, i.e., the con-
struction of a MAS has not been addressed yet. In this section, we introduce
three alternatives: formal derivation, integration with an existing methodology,
or proposing a new one.

Formal derivation is a technique wherein one would automatically realize a
system based on a given specification. Derivation can be understood as a form of
model-to-code transformations, although more systematic and less based on the
subjective judgment of a developer. An important approach is due to Vasconcelos
[61] [60], where a multiagent system, coded using logic programming, is inferred
from a specification, and then transformed using successive refinements into a

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/
http://lia.deis.unibo.it/sciff
http://www.cs.man.ac.uk/~schmidt/mspass
http://project.kjsmith.net/
http://www.cs.man.ac.uk/~schmidt/pdl-tableau/

www.manaraa.com

Formal Methods in Agent-Oriented Software Engineering 221

system adapted to the user’s needs. However, by and large, formal derivation
is conceptually and technically complex. As a result, formal methods usually
involve a significant component of modeling methodologies.

The enhancement of existing development methods is easier to find. Three
important illustrations of enhancement are Formal Tropos, Gaia, and MaSE.
Formal Tropos [47] [29] combines temporal constraints into the specification of
early requirements. This extension is supported by the T-Tool (downloadable
from http://www.dit.unitn.it/~ft/ft_tool.html), which is based on the
symbolic model checking tool NuSMV. NuSMV verifies formulas expressed in
the well-known branching-time temporal logic called Computation Tree Logic
(CTL), which enables expressing properties dealing with all or some future com-
putations (branches) of a software system. Telang and Singh [59] employ NuSMV
as a basis for verifying whether the sequence diagrams corresponding to a system
realization satisfy the commitments included in a business model.

Gaia [66] was an early attempt to integrate formal methods into agent-oriented
software engineering. Although its scope is limited to analysis, Gaia combined
describing properties and modeling. Its major drawback was the lack of sup-
port tools, something addressed in part with the MADSK platform [32], which
supports verifying liveness properties.

MaSE verifies interaction protocols using Spin model checking tool, as seen in
Lacey and DeLoach [40]. Interactions are expressed in agenTool using UML-like
statecharts. Lacey and DeLoach introduce an algorithm that converts statecharts
into Promela code, which is the input required for the Spin model checker. Ex-
pected sequences of messages (obtained from current sequence diagrams), dead-
locks (if a conversation ends in other state different from one of the end states
defined in the specification), liveness (looking for occurrences of all states of
the conversation at least in one execution path), and unused states or unused
messages are detected. There are other errors that agentTool and Spin cannot
detect, like timing errors (messages taking too much time to be sent or received,
for instance), hardware failures, guard conditions of the sequences, interacting
conversations causing a deadlock,.

Instead of enhancing an existing methodology, some authors propose new ap-
proaches for the creation of MAS. This is the case of the two following works:
CASL/ConGolog [41] and ForMAAD [34]. The combination of CASL and Con-
Golog with i* leads to a formal development method [41]. Given a set of i*
diagrams that capture the system requirements, ConGolog can formally capture
information about actors, tasks, processes, and goals, using as its starting point
information from i* Strategic Rationale (SR) diagrams. Annotated SR diagrams
include additional information, which enable an executable and observable Con-
Golog program. Also, tests can be applied to an ongoing simulation to verify if
specified properties hold. Intentional Annotated SR diagrams capture the knowl-
edge and intentions of the agents. Such diagrams are transformed into CASL,
thereby enabling the CASLve tool to be used to verify properties, more thor-
oughly than with ConGolog.

http://www.dit.unitn.it/~ft/ft_tool.html

www.manaraa.com

222 A. El Fallah-Seghrouchni, J.J. Gomez-Sanz, and M.P. Singh

ForMAAD, from Hadj-Kacem et al. [34], is a formal methodology based in
a combination of Z and temporal logics. It proposes a set of activities where
the specification is further refined. Each refinement is analyzed to check it still
satisfies the initial requirements. This proof is made with the aid of the tool
Z/EVES [52].

4 Related Work

In an earlier survey, Wooldridge [64] classified AOSE formal methods into three
areas: formal modeling (dealing with the use of formal methods to specify a
system); formal derivation (dealing with generating a MAS from a given specifi-
cation); and verification (dealing with the application of formal methods to the
verification of properties in MAS). We find that Wooldridge’s classification, al-
though intuitive, no longer holds up in the literature. The first reason is the low
number of works addressing formal derivation. Current research is more focused
on model transformations, as seen in Nunes et al. [46]. The second reason is
the availability of software tools for proving the satisfaction of properties. These
tools enable us to focus more on the issue of determining what has to be proven
and how to better use the available tools to do so. Addressing these problems
requires some mathematical skills but is mainly a question of engineering. The
above reasons have led us to pay attention to the method in the classification of
works in this survey and to provide hints along the survey on the way verification
is applied.

Other surveys exist that defend alternative perspectives on the application
of formal methods to MAS development [19,51]. Our present survey seeks to
motivate developers to apply formal methods, and so, we have filtered out works
that did not promote any software development tool. Dastani et al. [19] and
Rouff et al. [51] do not apply this restriction and, hence, include a wider set of
works. Agent-oriented programming languages with formal basis have not been
addressed here, except in cases where there was interest in the support tools.
The reason has been our focus on the formal method approach not on the con-
crete implementation. Thus, if a language was introduced as a programming
language and not as a specification language, such works were not included.
Nevertheless, readers interested in programming languages based on computa-
tional logic can review the following works: Sadri and Toni [53] and Bordini et
al. [8]. Sadri and Toni [53] categorize computational logic based approaches at-
tending to how they contribute to the construction of multiagent systems, e.g.,
knowledge representation or realization of the observe-think-act cycle inside an
agent. A complement to the present survey is the survey by Mascardi et al. [43],
which discusses BDI implementations based on computational logic. Fisher et al.
[27] present another survey of works related to computational logic. Since some
approaches to the implementation of MAS are not based on logics, it is worth
reviewing Bordini et al.s survey [8], which accounts for programming languages

www.manaraa.com

Formal Methods in Agent-Oriented Software Engineering 223

and framework, classifying them according to various programming paradigms,
including the imperative and object-oriented paradigms.

Several scientific events emphasize formal methods for multiagent systems.
These include the Autonomous Agents and MultiAgent Systems (AAMAS) con-
ference and workshops on Agent Oriented Software Engineering, Declarative
Agent Languages and Technologies, From Agent Theory to Agent Implementation
(AT2AI), and International Workshop on Computational Logic in MultiAgent
Systems (CLIMA).

5 Conclusions

The history of the development of formal methods for multiagent systems mirrors
the history of multiagent systems broadly. The earliest formal methods sought
to apply well-known formal techniques from traditional software engineering,
such as temporal logic and Petri nets. These methods, exemplified by [14,24,33],
generally did not emphasize high-level abstractions specific to multiagent sys-
tems, treating them mostly as conventional distributed systems. The next broad
phase of research brought in high-level abstractions that are central to different
theories of agents and multiagent systems, such as those involving beliefs and
intentions, commitments, and communications. These methods, exemplified by
[56], tended to be custom methods. Researchers realized that the effort required
in tooling is substantial. This has led to the modern research on formal methods,
exemplified by [11], wherein multiagent abstractions are mapped to the repre-
sentations of existing tools so as to leverage them for verifying MAS. There are
notable exceptions such as MCMAS [39] and SOCS-SI [15], which are extensive
tools that are customized to common agent abstractions.

Automatic theorem proving approaches seem to have had less impact than
some predicted. Model checking is the predominant approach. A major reason
may be the availability of tools for model checking and the apparent naturalness
with respect to which models can be specified. Most often, the formalisms used
in MAS community are logic-based (e.g. temporal logic).

When we recognize that multiagent systems are often complex software sys-
tems, we can see that the need for robust methodologies including formal meth-
ods applies in multiple points in their life cycle. MAS should be verified not
only in the design phase, but also during implementation, and even during de-
ployment (MAS should be endowed with monitoring tools). In particular, when
a multiagent system consists of autonomous, heterogeneous agents, there is no
well-defined central authority that can examine the construction or run-time
state of a given agent. In such cases, we must back away from verification in
the traditional sense outlined above and consider ways to check if the behavior
of an agent is compliant with respect to high-level requirements, such as those
expressed via commitments [62]. Possible approaches would involve having each
agent or maintain logs regarding its interactions with other agents. Verification
on the fly could also be suitable for MAS systems.

www.manaraa.com

224 A. El Fallah-Seghrouchni, J.J. Gomez-Sanz, and M.P. Singh

Formal methods for MAS garner a steady, though arguably limited, amount
of attention from the research community. Each year, we see new results show-
ing approaches that apply formal methods to AOSE, typically on specific case
studies. We hope that as formal methods mature, tools for them will improve,
leading to a greater interest in incorporating them in all stages of the life cycle
of the development and deployment of robust multiagent systems.

Acknowledgements

Jorge J. Gomez-Sanz has partially been funded by the the project Agent-based
Modelling and Simulation of Complex Social Systems (SiCoSSys), supported by
Spanish Council for Science and Innovation, with grant TIN2008-06464-C03-01,
and by the Programa de Creación y Consolidación de Grupos de Investigación
UCM-Banco Santander for the group number 921354 (GRASIA group).

Munindar Singh’s effort was partially supported by National Science Founda-
tion Grant #0910868.

References

1. The First International Joint Conference on Autonomous Agents & Multiagent
Systems, Bologna, Italy, Proceedings. ACM, New York (2002)

2. The Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004). IEEE Computer Society, New York (2004)

3. Ahmad, R., Rahimi, S.: ACVisualizer: A visualization tool for API-calculus. Mul-
tiagent and Grid Systems 4(3), 271–291 (2008)

4. Ahmad, R., Rahimi, S., Gupta, B.: An Intelligence-Aware Process Calculus for
Multi-Agent System Modeling. In: International Conference on Integration of
Knowledge Intensive Multi-Agent Systems 2007, pp. 210–215 (2007)

5. Alechina, N., Dastani, M., Logan, B.S., Meyer, J.-J.C.: A logic of agent programs.
In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 795–
800. AAAI Press, Menlo Park (2007)

6. Ashri, R., Luck, M., d’Inverno, M.: From SMART to agent systems development.
Engineering Applications of Artificial Intelligence 18(2), 129–140 (2005)

7. Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.): Methodologies and Software
Engineering for Agent Systems. Kluwer Academic, Dordrecht (2004)

8. Bordini, R.H., Braubach, L., Dastani, M., El Fallah-Seghrouchni, A., Gómez-Sanz,
J.J., Leite, J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A Survey of Programming
Languages and Platforms for Multi-Agent Systems. Informatica 30(1), 33–44 (2006)

9. Bordini, R.H., Fisher, M., Pardavila, C., Visser, W., Wooldridge, M.: Model check-
ing multi-agent programs with CASP. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 110–113. Springer, Heidelberg (2003)

10. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: State-Space Reduction Tech-
niques in Agent Verification. In: AAMAS 2004 [2], pp. 896–903 (2004)

11. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying Multi-agent Pro-
grams by Model Checking. Autonomous Agents and Multi-Agent Systems 12(2),
239–256 (2006)

www.manaraa.com

Formal Methods in Agent-Oriented Software Engineering 225

12. Bosse, T., Jonker, C.M., Meij, L., van der Sharpanskykh, A., Treur, J.: Specification
and Verification of Dynamics in Cognitive Agent Models. In: Proceedings of the
6th IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
Washington, DC, USA, pp. 247–254. IEEE Computer Society, Los Alamitos (2006)

13. Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O.,
Polak, B., Treur, J.: Compositional verification of a multi-agent system for one-to-
many negotiation. Applied Intelligence 20(2), 95–117 (2004)

14. Brazier, F.M.T., Jonker, C.M., Treur, J.: Principles of component-based design of
intelligent agents. Data Knowledge Engineering 41(1), 1–27 (2002)

15. Chesani, F., Gavanelli, M., Alberti, M., Lamma, E., Mello, P., Torroni, P.: Spec-
ification and verification of agent interaction using abductive reasoning (tutorial
paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp.
243–264. Springer, Heidelberg (2006)

16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

17. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking
multi-agent systems. In: The 8th International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 945–952. IFAAMAS (2009)

18. Colin, S., Lanoix, A., Kouchnarenko, O., Souquières, J.: Using CSP||B components:
Application to a platoon of vehicles. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008.
LNCS, vol. 5596, pp. 103–118. Springer, Heidelberg (2009)

19. Dastani, M., Hindriks, K.V., Meyer, J.-J.C. (eds.): Specification and Verification
of Multi-agent Systems. Springer, US (2010)

20. de Moura, L.M., Owre, S., Rueß, H., Rushby, J.M., Shankar, N., Sorea, M., Tiwari,
A.: SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

21. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M.: A flexible framework for veri-
fying agent programs. In: The 7th International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1303–1306. IFAAMAS (2008)

22. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A Common
Semantic Basis for BDI Languages. In: Dastani, M.M., El Fallah Seghrouchni, A.,
Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 124–139.
Springer, Heidelberg (2007)

23. Desai, N., Cheng, Z., Chopra, A.K., Singh, M.P.: Toward verification of commit-
ment protocols and their compositions. In: The 6th International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 33–35. IFAAMAS (2007)

24. D’Inverno, M., Luck, M.: Understanding Agent Systems. Springer, Heidelberg
(2004)

25. Fallah-Seghrouchni, A.E., Degirmenciyan-Cartault, I., Marc, F.: Modelling, Con-
trol and Validation of Multi-agent Plans in Dynamic Context. In: AAMAS 2004
[25], pp. 44–51 (2004)

26. Fisher, M.: Implementing temporal logics: Tools for execution and proof (Tutorial
paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp.
129–142. Springer, Heidelberg (2006)

27. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational Logics and
Agents: A Road Map of Current Technologies and Future Trends. Computational
Intelligence 23(1), 61–91 (2007)

28. Fisher, M., Wooldridge, M.: On the Formal Specification and Verification of Multi-
Agent Systems. International Journal of Cooperative Information Systems 6(1),
37–66 (1997)

www.manaraa.com

226 A. El Fallah-Seghrouchni, J.J. Gomez-Sanz, and M.P. Singh

29. Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M., Traverso, P.: Specifying and ana-
lyzing early requirements in tropos. Requirements Engineering 9(2), 132–150 (2004)

30. Gerard, S.N., Singh, M.P.: Formalizing and Verifying Protocol Refinement. TR 18,
North Carolina State University (2010)

31. De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence 121(1-2),
109–169 (2000)

32. Gorodetsky, V., Karsaev, O., Samoylov, V., Konushy, V.: Support for analysis,
design, and implementation stages with MASDK. In: Luck, M., Gomez-Sanz, J.J.
(eds.) AOSE 2008. LNCS, vol. 5386, pp. 272–287. Springer, Heidelberg (2009)

33. Gračanin, D., Singh, H.L., Hinchey, M.G., Eltoweissy, M., Bohner, S.A.: A CSP-
Based Agent Modeling Framework for the Cougaar Agent-Based Architecture. In:
IEEE International Conference on the Engineering of Computer-Based Systems,
pp. 255–262 (2005)

34. Hadj-Kacem, A., Regayeg, A., Jmaiel, M.: ForMAAD: A formal method for agent-
based application design. Web Intelligence and Agent Systems 5(4), 435–454 (2007)

35. Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: STATEMATE: a working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering 16(4), 403–414 (1990)

36. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea
Group Pub., Hershey (2005)

37. Hilaire, V., Gruer, P., Koukam, A., Simonin, O.: Formal driven prototyping ap-
proach for multiagent systems. International Journal of Agent-Oriented Software
Engineering 2(2), 246–266 (2008)

38. IEEE Computer Society: Software Engineering Body of Knowledge (SWEBOK).
Angela Burgess, EUA (2004)

39. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of Multiagent Systems via
Unbounded Model Checking. In: AAMAS 2004 [2], pp. 638–645 (2004)

40. Lacey, T., DeLoach, S.A.: Automatic Verification of Multiagent Conversations.
In: Proceedings of the 11th Annual Midwest Artificial Intelligence and Cognitive
Science Conference, pp. 93–100 (2000)

41. Lapouchnian, A., Lespérance, Y.: Using the conGolog and CASL formal agent
specification languages for the analysis, verification, and simulation of i* models. In:
Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling:
Foundations and Applications. LNCS, vol. 5600, pp. 483–503. Springer, Heidelberg
(2009)

42. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verifica-
tion of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

43. Mascardi, V., Demergasso, D., Ancona, D.: Languages for Programming BDI-style
Agents: an Overview. In: Workshop Dagli Oggetti agli Agenti, pp. 9–15. Pitagora
Editrice Bologna (2005)

44. Mazouzi, H., Fallah-Seghrouchni, A.E., Haddad, S.: Open protocol design for com-
plex interactions in multi-agent systems. In: AAMAS 2002 [1], pp. 517–526 (2002)

45. McMillan, K.L.: Methods for exploiting SAT solvers in unbounded model checking.
In: the First International Conference on Formal Methods and Models for Co-
Design, pp. 135–152. ACM/IEEE Computer Society (2003)

www.manaraa.com

Formal Methods in Agent-Oriented Software Engineering 227

46. Nunes, I., Cirillo, E., de Lucena, C.J.P., Sudeikat, J., Hahn, C., Gomez-Sanz, J.J.:
A survey on the implementation of agent oriented specifications. In: Gleizes, M.-
P., Gomez-Sanz, J.J. (eds.) AOSE 2010. LNCS, vol. 6038, pp. 157–167. Springer,
Heidelberg (2010)

47. Perini, A., Pistore, M., Roveri, M., Susi, A.: Agent-oriented modeling by inter-
leaving formal and informal specification. In: Giorgini, P., Müller, J.P., Odell, J.J.
(eds.) AOSE 2003. LNCS, vol. 2935, pp. 36–52. Springer, Heidelberg (2004)

48. Rahimi, S., Cobb, M., Ali, D., Petry, F.: A Modeling Tool for Intelligent-Agent
Based Systems: the API-Calculus. In: Soft-Computing Agents: a new perspective
for Dynamic Information Systems, pp. 165–186. IOS-Press, Amsterdam (2002)

49. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

50. Riemsdijk, M., Aştefănoaei, L., Boer, F.: Using the Maude Term Rewriting Lan-
guage for Agent Development with Formal Foundations. In: Dastani, M., Hindriks,
K.V., Meyer, J.-J.C. (eds.) Specification and Verification of Multi-agent Systems,
pp. 255–287. Springer, Heidelberg (2010)

51. Rouff, C.A., Hinchey, M., Rash, J., Truszkowski, W., Gordon-Spears, D. (eds.):
Agent Technology from a Formal Perspective. NASA Monographs in Systems and
Software Engineering. Springer-Verlag London Limited, Heidelberg (2006)

52. Saaltink, M.: The Z/EVES System. In: Till, D., P. Bowen, J., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

53. Sadri, F., Toni, F.: Computational Logic and Multi-Agent Systems: a Roadmap.
Computational Logic, Special Issue on the Future Technological Roadmap of
Compulog-Net (1999)

54. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal
Aspects of Computing 17, 390–422 (2005)

55. Shapiro, S.: Specifying and verifying multiagent systems using the cognitive agents
specification language (CASL). PhD thesis, Toronto, Ont., Canada, Canada (2005)

56. Shapiro, S., Lespérance, Y., Levesque, H.J.: The cognitive agents specification lan-
guage and verification environment for multiagent systems. In: AAMAS 2002 [1] ,
pp. 19–26

57. Shapiro, S., Lespérance, Y., Levesque, H.: The Cognitive Agents Specification Lan-
guage and Verification Environment. In: Dastani, M., Hindriks, K.V., Meyer, J.-
J.C. (eds.) Specification and Verification of Multi-agent Systems, pp. 289–315.
Springer, US (2010)

58. Singh, M., Chopra, A.: Correctness Properties for Multiagent Systems. In: Bal-
doni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS,
vol. 5948, pp. 192–207. Springer, Heidelberg (2010)

59. Telang, P.R., Singh, M.P.: Specifying and Verifying Cross-Organizational Business
Models: An Agent-Oriented Approach. TR 12, North Carolina State University
(May 2010)

60. Vasconcelos, W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., Wooldridge,
M.: Rapid prototyping of large multi-agent systems through logic program-
ming. Annals of Mathematics and Artificial Intelligence 41, 135–169 (2004),
doi:10.1023/B:AMAI.0000031194.57352.e7

61. Vasconcelos, W.W., Sabater, J., Sierra, C., Querol, J.: Skeleton-based agent devel-
opment for electronic institutions. In: AAMAS 2002 [1], pp. 696–703 (2002)

62. Venkatraman, M., Singh, M.P.: Verifying Compliance with Commitment Protocols:
Enabling Open Web-Based Multiagent Systems. Autonomous Agents and Multi-
Agent Systems 2(3), 217–236 (1999)

www.manaraa.com

228 A. El Fallah-Seghrouchni, J.J. Gomez-Sanz, and M.P. Singh

63. Viroli, M., Omicini, A.: Process-algebraic approaches for multi-agent systems: an
overview. Applicable Algebra in Engineering, Communication and Computing 16,
69–75 (2005), doi:10.1007/s00200-005-0170-3

64. Wooldridge, M.: Agent-Based Software Engineering. IEE Proceedings - Software
Engineering 144(1), 26–37 (1997)

65. Wooldridge, M., Fisher, M., Huget, M.-P., Parsons, S.: Model Checking Multi-
Agent Systems with MABLE. In: AAMAS 2002 [1], pp. 952–959

66. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000)

www.manaraa.com

Author Index

Aldewereld, Huib 18
Argente, Estefańıa 32, 157

Bernon, Carole 180
Beydoun, Ghassan 157
Bogdanovych, Anton 140
Botti, Vicent 32

Cirilo, Elder 169
Cohen, A. 140
Cossentino, Massimo 191

DeLoach, Scott A. 3
Dignum, Frank 18
Dignum, Virginia 18

El Fallah-Seghrouchni, Amal 213

Fischer, Klaus 110
Fuentes-Fernández, Rubén 51, 157

Garćıa-Magariño, Iván 51
Gleizes, Marie-Pierre 191
Gomez-Sanz, Jorge J. 51, 169, 213

Hahn, Christian 110, 169
Henderson-Sellers, Brian 157

Julian, Vicente 32

Kulesza, Uirá 125

Low, Graham 157
Lucena, Carlos J.P. de 125, 169

Molesini, Ambra 191

Nguyen, Cu D. 180
Nunes, Camila 125
Nunes, Ingrid 125, 169

Omicini, Andrea 191
Oyenan, Walamitien H. 3

Padgham, Lin 66
Pavón, Juan 180
Penserini, Loris 18
Perini, Anna 180

Renz, Wolfgang 80
Rodŕıguez, Juan Antonio 140

Sierra, Carles 140
Simoff, Simeon 140
Singh, Gurdip 3
Singh, Munindar P. 97, 213
Sollenberger, Derek J. 97
Sudeikat, Jan 80, 169

Thangarajah, John 66, 180

Warwas, Stefan 110

Zhang, Zhiyong 66
Zinnikus, Ingo 110

	6038
	Preface
	Organization
	Table of Contents
	Part I Organizations
	Exploiting Reusable Organizations to Reduce Complexity in Multiagent System Design
	Introduction
	Related Work
	Organizational Model
	Service Model
	Services
	Operations and Connectors
	Connection Points
	Service Providers
	Service Consumer

	Composition of Services
	Goal Model Composition
	Role Model Composition
	Organization Composition

	Case Study
	The Cleaning Service
	The Cooperative Robotic for Airport Management Organization
	The Composition Process
	Implementation Overview

	Conclusion and Future Work
	References

	A Formal Specification for Organizational Adaptation
	Introduction
	Background
	The ALIVE Project
	A Formal Model for Organizations
	A Methodological Context

	Forms of Organizational Structure Adaptation
	Towards a Formal Interpretation
	Formal Organization Model
	Reorganization Analysis

	Related Work
	Conclusions and Future Work
	References

	GORMAS: An Organizational-Oriented Methodological Guideline for Open MAS
	Introduction
	GORMAS
	Mission Analysis
	Service Analysis
	Organizational Design
	Organization Dynamics Design
	Design of Control Policies.
	Design of the Reward System.

	Related Work
	Conclusions
	References

	Part II Development Techniques
	Model Transformations for Improving Multi-agent System Development in INGENIAS
	Introduction
	MTBE in INGENIAS and the MTGenerator Tool
	The MTBE Algorithm

	Transformations in the INGENIAS Development Process
	Transformations for Realizing Use Case Behaviors
	Transformation for Skill Definition
	Evaluation of the Use of Transformations on an AOSE Methodology

	Related Work
	Conclusions
	References

	Automated Testing for Intelligent Agent Systems
	Introduction
	Testing Process Overview
	Test Case Generation
	Test Case Execution
	Implementation
	Discussion and Conclusion
	References

	Qualitative Modeling of MAS Dynamics
	Introduction
	Systemic Modeling of Collective Agent Behavior
	Systematic Examination of Qualitative MAS Dynamics
	Design Preprocessing
	Systemic Model Construction
	Behavior Analysis

	Case Study: Examining Marsworld Dynamics
	The Marsworld Design
	Examining the Marsworld Dynamics
	Discussion

	Related Work
	Conclusions
	References

	Part III Development Method Proposals
	Methodology for Engineering Affective Social Applications
	Introduction
	Background
	Appraisal Theory
	Communicative Acts

	Koko
	Methodology
	Evaluation
	Configuring booST

	Discussion
	References

	Automatic Generation of Executable Behavior: A Protocol-Driven Approach
	Introduction
	Domain Specific Modeling Language for Multiagent Systems
	Interaction View
	Behavioral View

	Example: Contract Net Protocol
	Model-Driven Methodology to Generate Executable Code
	From Interaction Protocol to Behaviors
	From Behaviors to JACK

	Related Work
	Conclusion
	References

	On the Development of Multi-agent Systems Product Lines: A Domain Engineering Process
	Introduction
	Existing MAS-PL Approaches
	A Domain Engineering Process for MAS-PL
	Process Overview
	Method Fragments Incorporated to Our Process
	Domain Analysis
	Domain Design
	Domain Realization

	Conclusions and Future Work
	References

	Developing Virtual Heritage Applications as Normative Multiagent Systems
	Introduction
	Virtual Institutions
	Virtual Institutions Methodology
	Deployment

	City of Uruk: Virtual Institutions in Cultural Heritage
	Significance of Uruk
	The Prototype
	Development of the Prototype

	Conclusion
	References

	Part IV State-of-the-Art Survey
	Modelling with Agents
	Introduction
	Semantic Perspective
	Syntactic Perspective
	Operational Perspective
	Discussion and Conclusions
	References

	A Survey on the Implementation of Agent Oriented Specifications
	Introduction
	Dealing with the Gap from Specification to Code
	Assisted Translation
	Automatic Translation
	Agent Oriented Methodologies
	Agent Oriented Modeling Languages

	Conclusions
	References

	Testing in Multi-Agent Systems
	Introduction
	Classification Dimensions
	MAS Testing Approaches
	Unit Level
	Agent Level
	Integration Level
	Multiple Testing Levels
	Simulation-Based Design Validation

	Open Issues
	References

	Processes Engineering and AOSE
	Software Processes
	Software Processes Engineering
	Situational Method Engineering
	Fragment Definition
	Fragment Repository
	Tools

	AOSE Software Processes Engineering
	AOSE Situational Method Engineering
	Fragment Definition
	Fragment Repository and Tools
	AOSE Meta-model
	Agent-Oriented Design Processes
	Roadmap

	Conclusion
	References

	Formal Methods in Agent-Oriented Software Engineering
	Introduction
	Formal Specification and Tools
	Formal Specification
	Tools for Verification

	Developing with Formal Methods
	Related Work
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

